Skip to main content

Advertisement

Genome canalization: the coevolution of transposable and interspersed repetitive elements with single copy DNA

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Transposable and interspersed repetitive elements (TIREs) are ubiquitous features of both prokaryotic and eukaryotic genomes. However, controversy has arisen as to whether these sequences represent useless ‘selfish’ DNA elements, with no cellular function, as opposed to useful genetic units.

In this review, we selected two insect species, the Dipteran Drosophila and the Lepidopteran Bombyx mori (the silkmoth), in an attempt to resolve this debate. These two species were selected on the basis of the special interest that our laboratory has had over the years in Bombyx with its well known molecular and developmental biology, and the wealth of genetic data that exist for Drosophila. In addition, these two species represent contrasting repetitive element types and patterns of distribution. On one hand, Bombyx exhibits the short interspersion pattern in which Alu-like TIREs predominate while Drosophila possesses the long interspersion pattern in which retroviral-like TIREs are prevalent. In Bombyx, the main TIRE family is Bm-1 while the Drosophila group contains predominantly copia-like elements, non-LTR retroposons, bacterial-type retroposons and fold-back transposable elements sequences. our analysis of the information revealed highly non-random patterns of both TIRE biology and evolution, more indicative of these sequences acting as genomic symbionts under cellular regulation rather than useless or selfish junk DNA. In addition, we extended our analysis of potential TIRE functionality to what is known from other eukaryotic systems. From this study, it became apparent that these DNA elements may have originated as innocuous or selfish sequences and then adopted functions. The mechanism for this conversion from non-functionality to specific roles is a process of Coevolution between the repetitive element and other cellular DNA often times in close physical proximity. The resulting interdependence between repetitive elements and other cellular sequences restrict the number of evolutionarily successful mutational changes for a given fuction or cistron. This mutual limitation is what we call genome canalization. Well documented examples are discussed to support this hypothesis and a mechanistic model is presented for how such genomic canalization can occur. Also proposed are empirical studies which would support or invalidate aspects of this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adami, G. & L. E. Babiss, 1991. DNA template effect on RNA splicing: Two copies of the same gene in the same gene in the same nucleus are processed differently. EMBO J. 10: 3457–3465.

    Google Scholar 

  • Adams, D. S., T. H. Eickbush, R. J. Herrera & P. M. Lizardi, 1986. A highly reiterated family of transcribed oligo(A)-terminated, interspersed DNA elements in the genome of Bombyx mori. J. Mol. Biol. 187: 465–478.

    Google Scholar 

  • Ayer, S. & CH. Benjayati, 1990. Conserved enhancer and silencer elements responsible for differential Adh transcription in Drosophila cell lines. Mol. Cell. Biol. 10: 3512–3523.

    Google Scholar 

  • Bains, W., 1986. The multiple origins of human Alu sequences. J. Mol. Evol. 23: 189–199.

    Google Scholar 

  • Baldini, A. & D. C. Ward, 1991. In situ hybridization banding of human chromosomes with Alu-PCR products: A simultaneous karyotype for gene mapping studies. Genomics 9: 770–774.

    Google Scholar 

  • Baniahmad, A., M. Muller, Ch. Steiner & R. Renkawitz, 1987. Activity of two different silencer elements of the chicken lysozyme gene can be compensated by enhancer elements. EMBO J. 6: 2297–2303.

    Google Scholar 

  • Banville, D. & Y. Boie, 1989. Retroviral long terminal repeat is the promoter of the gene encoding the tumor-associated calcium-binding protein Oncomodulin in the rat. J. Mol. Biol. 207: 481–490.

    Google Scholar 

  • Basden, E. B., 1984. The species as a block to mutations. Drosophila Inform. Serv. 60: 57.

    Google Scholar 

  • Beerman, S., 1984. Circular and linear structures in chromatin dimunition of Cyclops. Chromosoma 89: 321–328.

    Google Scholar 

  • Beitel, L. K., J. W. Chamberlain, S. Benchimol, T. Lam, G. P. Price & C. P. Stanners, 1986. Studies in HSAG, a middle repetitive family of genetic elements which elicit a leukemia-related cellular surface antigen.Nucl. Acids Res. 14: 3391–3408.

    Google Scholar 

  • Beitel, L. K., J. G. McArthur & C. P. Stanners, 1991. Sequence requirements for the stimulation of gene amplification by a mammalian genomic element. Gene 102: 149–156.

    Google Scholar 

  • Belyaev, D. K., 1979. Destabilizing selection as a factor in domestication. J. Hered. 70: 301–308.

    Google Scholar 

  • Bernardi, G. & G. Bernardi, 1986. Compositional constraints and the human genome. J. Mol. Evol. 24: 1–11.

    Google Scholar 

  • Bernardi, G., 1989. The isochore organization of the human genome. Annu. Rev. Genet. 23: 637–661.

    Google Scholar 

  • Biémont, CH., A. Aouar & C. Arnault, 1987. Genome reshuffling of the copia element in an inbred line of Drosophila melanogaster. Nature 329: 742–744.

    Google Scholar 

  • Biessman, H., J. M. Mason, C. Ferry, M. d'Hulst, K. Valgeirsdottir, K. L. Traverse & M. L. Pardue, 1990. Addition of Telomere-Associated HeT DNA sequences ‘Heals’ broken chromosome ends in Drosophila. Cell 61: 663–673.

    Google Scholar 

  • Bingham, P. M. & C. H. Chapman, 1986. Evidence that whiteblood is a novel type of temperature-sensitive mutation resulting from teperature-dependent effects of a transposon insertion on formation of white transcripts. EMBO J. 5: 3343–3351.

    Google Scholar 

  • Bingham, P. M. & Z. Zachar, 1989. Retrotransposons and the FB transposon from Drosophila melanogaster, pp. 485–502. in Mobil DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology, D.C.

    Google Scholar 

  • Birchler, J. A., J. C. Hiebert & L. Rabinow, 1989. Interaction of the mottler of white with transposable elements alleles at the white locus in Drosophila melanogaster. Genes & Development 3: 73–84.

    Google Scholar 

  • Bird, A. P., 1987. CpG islands as gene markers in the vertebrate nucleus. TIG 3: 342347.

    Google Scholar 

  • Bocke, J. D., 1989. In Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Bonaccorsi, S., C. Pisano, F. Puoti & M. Gatti, 1988. Y chromosome loops in Drosophila melanogaster. Genetics 20: 1015–1034.

    Google Scholar 

  • Boyle, A. L., S. G. Ballard & D. C. Ward, 1990. Differential distribution of long and short interspersed element sequences in the mouse genome: Chromosome karyotyping by fluorescence in situ hybridization. Proc. Natl. Acad. Sci. USA. Genetics 87: 7757–7761.

    Google Scholar 

  • Britten, R. J., 1986. Rates of DNA sequence evolution differ between taxonomic groups. Science 231: 1393–1398.

    Google Scholar 

  • Brosius, J., 1991. Retrotransposons-seeds of evolution. Science 251: 753.

    Google Scholar 

  • Brundin, L. Z., 1986. Evolution by orderly stepwise subordination and largely nonrandom mutations. Syst. Zool. 35(4): 602–607.

    Google Scholar 

  • Bryant, L. A., C. Brierley, A. J. Flavell & J. H. Sinclair, 1991. The retrotransposon copia regulates Drosophila gene expression both positively and negatively. Nucl. Acids Res. 19: 5533–5536.

    Google Scholar 

  • Burke, W. D., C. C. Calalang & T. H. Eickbush, 1987. The site-specific ribosomal insertion element type II of Bombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzyme. Mol. Cell. Biol. 7: 2221–2230.

    Google Scholar 

  • Chang-Yeh, A., D. E. Mold & R. C. C. Huang, 1991. Identification of a novel murine IAP-promoted placenta expressed gene. Nucl. Acids Res. 19: 3667–3672.

    Google Scholar 

  • Charlesworth, B. & C. H. Langley, 1989. The population genetics of Drosophila transposable element. Ann. Rev. Genet. 23: 251–287.

    Google Scholar 

  • Chen, T. L. & L. Manuelidis, 1989. SINEs and LINEs cluster in distinct DNA fragments of Giemsa band size. Chromosoma 98: 309–316.

    Google Scholar 

  • Cho, K. O., B. Minsk & J. A. Wagner, 1990. NICER elements: A family of nerve growth factor-inducible cAMP-extinguishable retrovirus-like elements. Proc. Natl. Acad. Sci. USA. 87: 3778–3782.

    Google Scholar 

  • Clarke, L. & M. P. Baum, 1990. Functional analysis of a centromere from Fission Yeast: A role for centromere-specific repeated DNA sequences. Mol. Cell. Biol. 10: 1863–1872.

    Google Scholar 

  • Cockerill, P. N., 1990. Nuclear matrix attachment occurs in several regions of the IgH locus. Nucl. Acids Res. 18: 2643–2648.

    Google Scholar 

  • Corces, V. G. & P. K. Geyer, 1991. Interactions of retrotransposons with the host genome: the case of the gypsy element of Drosophila. TIG 7: 86–90.

    Google Scholar 

  • Crain, W. R., E. H. Davidson & R. J. Britten, 1976a. Contrasting patterns of DNA sequence arrangement in Apis mellifera (Honeybee) and Musca domestica (Housefly). Chromosoma 59: 1–2.

    Google Scholar 

  • Crain, W. R., F. C. Eden, W. R. Pearson, E. H. Davidson & R. J. Britten, 1976b. Absence of short period interspersion of repetitive sequences in the DNA of Drosophila melanogaster. Chromosoma 56: 309–326.

    Google Scholar 

  • Crothers, D. M., T. E. Haran & J. G. Nadeau, 1990. Intrinsically bent DNA. J. Biol. Chem. 265: 7093–7096.

    Google Scholar 

  • Csink, A. K. & J. F. McDonald, 1990. Copia expression is variable among natural populations of Drosophila. Genetics 126: 375–385.

    Google Scholar 

  • Davidson, E. H., B. R. Hough, C. S. Amerson & R. J. Britten, 1973. General interspersion of repetitive with non-repetitive sequence elements in the DNA Xenopus. J. Mol. Biol. 77: 1–23.

    Google Scholar 

  • Davidson, E. H., G. A. Galau, R. C. Angerer & R. J. Britten, 1975. Comparative aspects of DNA organization in Metazoa. Chromosoma 51: 253–259.

    Google Scholar 

  • Deininger, P. L., 1989. SINEs. Short Interspersed Repeated DNA Elements in Higher Eukaryotes, pp. 619–636 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Devlin, R. H., D. G. Holm, K. R. Morin & B. M. Honda, 1990a. Identifying a single-copy DNA sequence associated with the expression of a heterochromatic gene, the light locus of Drosophila melanogaster. Genome 33: 405–415.

    Google Scholar 

  • Devlin, R. H., B. Bingham & B. T. Wakimoto, 1990b. The organization and expression of the light gene, a heterochromatic gene of Drosophila melanogaster. Genetics 125: 129–140.

    Google Scholar 

  • Di Nocera, P. P. & Y. Sakaki, 1990. LINEs: a superfamily of retrotransposable ubiquitous DNA elements. TIG 6: 29–30.

    Google Scholar 

  • Doolittle, W. F. & C. Sapienza, 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 604–607.

    Google Scholar 

  • Doolittle, W. F., 1989. Hierarchical approaches to genome evolution. Can. J. Phil. Suppl. 14: 101–133.

    Google Scholar 

  • Dover, G., 1986. Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. TIG 2: 159–165.

    Google Scholar 

  • Dowsett, A. P., 1983. Closely related species of Drosophila can contain different libraries of middle repetitive DNA sequences. Chromosoma 88: 104–108.

    Google Scholar 

  • Dowsett, A. P. & M. W. Young, 1982. Differing levels of dispersed repetitive DNA among closely related species in Drosophila. Proc. Natl. Acad. Sci. USA 79: 4570–4574.

    Google Scholar 

  • Edelman, W., B. Kroeger, M. Goller & I. Horak, 1989. A recombination hotspot in the LTR of a mouse retrotransposon identified in an in vitro system. Cell 57: 937–946.

    Google Scholar 

  • Efstratiadis, A., W. R. Crain, R. J. Britten, E. H. Davidson & F. C. Kafatos, 1976. DNA sequences organization in the lepidopteran Antheraea pernyi. Proc. Natl. Acad. Sci. USA 73: 2289–2293.

    Google Scholar 

  • Engels, W. R., 1989. P Elements in Drosophila melanogaster, pp. 437–484 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Finnegan, D. J. & D. H. Faucett, 1986. Transposable Elements in Drosophila melanogaster. Oxford Surv. Eukaryotic Genes 3: 1–62.

    Google Scholar 

  • Finnegan, D. J., 1989. The I factor and I-R hybrid dysgenesis in Drosophila melanogaster, pp. 503–517 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Firtel, R. A., 1989. Mobile Genetic Elements in the Cellular Slime Mold Dictyostelium discoiddeum, pp. 557–566 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Flavell, A. J., J. S. Alphey, S. J. Ross & A. J. Leigh-Brown, 1990. Complete revesions of a gypsy retrotransposon-induced cut locus mutation in Drosophila melanogaster involving jockey transposon insertions and flanking gypsy sequence deletions Mol. Gen. Genet. 220: 181–185.

    Google Scholar 

  • Fornace, A. J., I. Alamo, M. O. Hollander & E. Lamoreaux, 1989. Induction of heat shock protein transcripts and B2 transcripts by various stresses in Chinese Hamster cells. Exper. Cell Res. 182: 61–74.

    Google Scholar 

  • Fotaki, M. E. & K. Latrou, 1988. Identification of a transcriptionally active pseudogene in the chorion locus of the silkmoth Bombyx mori: regional sequence conservation and biological function. J. Mol. Biol. 203: 849–860.

    Google Scholar 

  • Fridell, R. A., A. M. Pret & L. L. Searles, 1990. A retrotransposon 412 insertion within an exon of the Drosophila melanogaster vermillion gene is spliced from the precursor RNA. Genes Dev. 4: 559–566.

    Google Scholar 

  • Gabriel, A., T. J. Yen, D. C. Schwartz, C. L. Smith, J. D. Bocke, B. Sollner-Webb & D. W. Cleveland, 1990. A rapidly rearranging retrotransposon within the miniexon gene locus of Crithidia Fasciculata. Mol. Cel. Biol. 10: 615–624.

    Google Scholar 

  • Gage, L. P., 1974. The Bombyx mori genome: analysis by DNA reassociation kinetics. Chromosoma 45: 27–42.

    Google Scholar 

  • Gan, L., W. Zhang & W. H. Klein, 1990. Repetitive DNA sequences linked to the Sea Urchin Spec genes contain transcriptional enhancer-like elements. Dev. Biol. 139: 186–196.

    Google Scholar 

  • Gao, G.-P. & R. J. Herrera, 1992. Transcriptional activity of Bm-1 repetitive elements in the genome of Bombyx mori. In preparation.

  • Garbe, J. C., W. G. Bendena, M. Alfano & M. L. Pardeu, 1986. A Drosophila heat shock locus with a rapidly diverging sequence but a conserved structure. J. Biol. Chem. 261: 16889–16894.

    Google Scholar 

  • Gasser, S. M., B. B. Amati, M. E. Cardenas & J. F. X. Hoffmann, 1989. Studies on scaffold attachment sites and their relation to genome function. Int. Rev. Cyto. 119: 57–96.

    Google Scholar 

  • Georgiev, P. G., S. E. Korochkina, S. G. Georgieva & T. I. Gerasimova, 1990. A novel transposition system in Drosophila melanogaster depending on the Stalker mobile genetic element. EMBO J. 9: 2037–2044.

    Google Scholar 

  • Georgiev, P. G., S. G. Korochkina & T. I. Gerasimova, 1990. Mitomycin C induces genomic rearrangements involving transposable elements in Drosophila melanogaster. Mol. Gen. Genet. 220: 229–233.

    Google Scholar 

  • Gerasimova, T. I., L. V. Matjunina, L. J. Mizrokhi & G. P. Georgiev, 1985. Successive transposition explosion in Drosophila melanogaster and reverse transpositions of mobile dispersed genetic elements. EMBO J. 4: 3773–3779.

    Google Scholar 

  • Gilson, E., D. Perrin & M. Hofnung, 1990. DNA polymerase I and a protein complex bind specifically to E. coli palindromic unit highly repetitive DNA: implications for bacterial chromosome organization. Nucl. Acids Res. 18: 3941–3952.

    Google Scholar 

  • Gilson, D. S., W. Sawrin, D. Perrin, S. Bachelier & M. Hofnung, 1991. Palindromic Units are part of a new bacterial interspersed mosaic element (BIME). Nucl. Acids Res. 19: 1375–1383.

    Google Scholar 

  • Gillespie, D., L. Donehower & D. Strayer, 1982. Evolution of primate DNA organization, in Genome Evolution, edited by G. A. Dover and R. B. Flavell, Academic Press.

  • Glaichenhaus, N. & F. Cuzin, 1987. A role for ID repetitive sequences in growth and transformation-dependent regulation of gene expression in rat fibroblast. Cell 50: 1081–1089.

    Google Scholar 

  • Glatzer, K. H., 1984. Preservation of nuclear RNP antigens in male germ cell development of Drosophila hydei. Mol. Gen. Genet. 196: 236–243.

    Google Scholar 

  • Goldberg, R. B., W. R. Crin, J. V. Roderman, G. P. Moore, T. R. Barnett, R. C. Miggins, R. A. Gelfand, G. A. Galaw, R. J. Britten & R. C. Davidson, 1975. Sequence organization in the genome of five marine invertebrates. Chromosoma 51: 225–251.

    Google Scholar 

  • Goldman, M. A., G. P. Holmquist, M. C. Gray, L. A. Caston & A. Nag, 1984. Replication timing of mammalian genes and middle repetitive sequences. Science 224: 689–692.

    Google Scholar 

  • Hackstein, J. H. P., W. Hennig & I. Siegmund, 1987. Y chromosome-specific mutations induced by a giant transposon in Drosophila hydei. Mol. Gen. Genet. 207: 455–465.

    Google Scholar 

  • Hall, B. G., 1988. Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence. Genetics 120: 887–897.

    Google Scholar 

  • Hanscombe, O., D. Whyatt, P. Fraser, N. Yannovtsos, D. Greavers, N. Dillon & F. Grosveld, 1991. Importance of globin gene order for correct developmental expression. Gene Dev. 5: 1387–1394.

    Google Scholar 

  • Harendza, C. J. & L. F. Johnson, 1990. Polyadenylation signal of the mouse thymidylate synthase gene was created by insertion of an L1 repetitive element downstream of the open reading frame. Proc. Natl. Acad. Sci. USA 87: 2531–2535.

    Google Scholar 

  • Hawley, R. S. & C. H. Marcus, 1989. Recombinational controls of rDNA redundancy in Drosophila. Ann. Rev. Genet. 23: 87–120.

    Google Scholar 

  • Healy, M. J., R. J. Rusell & G. L. G. Miklos, 1988. Molecular studies on interspersed repetitive and unique sequences in the region of the complementation group uncoordinated on the X chromosome Drosophila melanogaster. Mol. Gen. Genet. 213: 63–71.

    Google Scholar 

  • Hearn, M. G., A. Hendrick, T. A. Grigliatti & B. T. Wakimoto, 1991. The effect of modifiers of position-effect variegation on the variegation of heterochromatic genes of Drosophila melanogaster. Genetics 125: 129–140.

    Google Scholar 

  • Henikoff, S., 1990. Position-effect variegation after 60 years. TIG 6: 422–426.

    Google Scholar 

  • Hennig, W., R. C. Brand, J. Hackstein, R. Hochstenbach, H. Kremer, D. Lankenau, S. Lankenau, K. Miedema & A. Potgens, 1989. Y chromosomal fertility genes of Drosophila: a new type of eukaryotic genes. Genome 31: 561–571.

    Google Scholar 

  • Herrera, R. J. & J. Wang, 1991. Evidence for a relationship between the Bombyx mori middle repetitive Bm1 sequence family and U1 snRNA. Genetica 84: 31–37.

    Google Scholar 

  • Hey, J., 1989. The transposable portion of the genome of Drosophila algonguin is very different from that in D. melanogaster. Mol. Biol. Evol. 8: 282–296.

    Google Scholar 

  • Hibner, B. L., W. D. Burke & T. H. Eickbush, 1991. Sequence identity in an early chorion multigene family is the result of localized gene conversion. Genetics 128: 595–606.

    Google Scholar 

  • Hinton, C. W., 1984. Morphogenetically specific mutability in Drosophila ananassae. Genetics 106: 631–653.

    Google Scholar 

  • Holmquist, G. P. & L. A. Caston, 1986.Replication time of interspersed repetitive DNA sequences in hamsters. Biochimica et Biophysica Acta 868: 164–177.

    Google Scholar 

  • Holmquist, G. F., 1989. Evolution of chromosome bands: molecular ecology of non-coding DNA. J. Mol. Evol. 28: 469–486.

    Google Scholar 

  • Holowacz, T. & U. DeBoni, 1991. Arrangement of kinetochore proteins and satellite DNA in neuronal interphase nuclei: changes induced by gamma-aminobutyric acid (GABA). Exper. Cell Res. 197: 36–42.

    Google Scholar 

  • Howes, G., M. O'Connor & W. Chia, 1988. On the specificity and effects on transcription of P-elements insertions at the yellow locus of Drosophila melanogaster. Nucl. Acids Res. 16: 3039–3052.

    Google Scholar 

  • Hull, R. & H. Will, 1989. Molecular biology of viral and nonviral retroelements. TIG 5: 357–35.

    Google Scholar 

  • Hutchison, C. A., S. C. Hardies, D. D. Loeb, W. R. Shehee & M. H. Edgell, 1989. LINEs and Related Retroposons: Long Interspersed Repeated Sequences in the Eukaryotic Genome, pp. 593–617 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Hyrien, O., M. Debatisse, G. Buttin & B. R.de Saint Vincent, 1987. A hotspot for novel amplification joints in a mosaic of Alu-like repeats and palindromic A + T-rich DNA EMBO J. 6: 2401–2408.

    Google Scholar 

  • Ito, H., K. Yoshida & S. H. Hori, 1989. Positive regulation of the Drosophila melanogaster G6PD gene by an insertion sequence. Biochem. Genet. 27: 379–393.

    Google Scholar 

  • Jakubczak, J. L., W. D. Burke & T. H. Eickbush, 1991. Retrotransposable elements R1 and R2 interrupt the rRNA genes of most insects. Proc. Natl. Acad. Sci. USA. 88: 3297–3299.

    Google Scholar 

  • Junakovic, N., C. DiFranco, M. Best-Belpomme & G. Echalier, 1988. On the transposition of copia-like elements in cultured Drosophila cells. Chromosoma 97: 212–218.

    Google Scholar 

  • Junakovic, N. & V. Angelucci, 1986. Polymorphisms in the genomic distribution of copia-like elements in related laboratory stocks of Drosophila melanogaster. J. Mol. Evol. 24: 83–88.

    Google Scholar 

  • Junakovic, N., C. DiFranco, P. Barsanti & G. Palumbo, 1986. Transposition of Copia-like nomadic elements can be induced by heat shock. J. Mol. Evol. 24: 89–93.

    Google Scholar 

  • Kaplan, D. J., J. Jurka, J. F. Solus & C. H. Duncan, 1991. Medium reiteration frequency repetitive sequences in the human genome. Nucl. Acids Res. 19: 4731–4738.

    Google Scholar 

  • Kelly, R., M. Gibbs, A. Collick & A. J. Jeffreys, 1991. Spontaneous mutation at the hypervariable mouse minisatellite locus Ms6-hm: flanking DNA sequence and analysis of germline and early somatic mutation events. Proc. R. Soc. Lond. 245: 235–245.

    Google Scholar 

  • Kholodilov, N. G., V. N. Bolshakov, V. M. Blinov, V. V. Solovyov & I. F. Zhimulev, 1988. Intercalary heterochromatin in Drosophila. Chromosoma 97: 247–253.

    Google Scholar 

  • Kim, J., CH. Yu A. Bailey, R. Hardison & C.K.j. Shen, 1989. Unique sequence organization and erythroid cell-specific nuclear factor-binding of mammalian 01 globin promoters. Nucl. Acids Res. 17: 5687–5701.

    Google Scholar 

  • Kim, A. I., E. S. Belyaeva & M. M. Aslanian, 1990. Autonomous transposition of gypsy mobile elements and genetic instability in Drosophila melanogaster. Mol. Gen. Genet. 224: 303–308.

    Google Scholar 

  • Kobayashi, S., S. Goto & K. Anzai, 1991. Brain-specific small RNA transcript of the identifier sequences is present as a 10 S ribonucleoprotein particle. J. Biol. Chem. 266: 4726–4730.

    Google Scholar 

  • Korenberg, J. R. & M. C. Rykowski, 1988. Human genome organization: Alu, LINEs, and the molecular structure of metaphase chromosome bands. Cell 53: 391–400.

    Google Scholar 

  • Kornreich, R., D. F. Bishop & R. J. Desnick, 1990. a-Galactosidase A gene rearrangements causing Fabry disease. J. Biol. Chem 265: 9319–9326.

    Google Scholar 

  • Krane, D. E. & R. C. Hardison, 1990. Short interspersed repcats in rabbit DNA can provide functional polyadenylation signals. Mol. Biol. Evol. 7: 1–8.

    Google Scholar 

  • Kubli, E. 1986. Molecular mechanism of suppression in Drosophila. TIG 204–209.

  • La Mantia, G., D. Maglione, G. Pengue, A.Di Cristofano, A. Simeone, L. Lanfrancone & L. Lania, 1991. Identification and characterization of novel human endogenous retroviral sequences preferentially expressed in undifferentiated embryonal carcinoma cells. Nucl. Acids Res. 19: 1513–1520.

    Google Scholar 

  • Laimonis, L., M. Holmgren-Konig & G. Khoury, 1986. Transcriptional ‘silencer’ element in rat repetitive sequences associated with the rat insulin 1 gene locus. Proc. Natl. Acad. Sci. USA 83: 3151–3155.

    Google Scholar 

  • Landry, S. & M. Zannis-Hadjopoulos, 1991. Classes of autonomously replicating sequences are found among early-replicating monkey DNA. Bioch. et Biophys. Acta 1088: 234–244.

    Google Scholar 

  • Lankenau, D., P. Hyijser E. Jansen, K. Miedema & W. Hennig, 1990. DNA sequence comparison of micropia transposable elements from Drosophila hydei and Drosophila melanogaster. Chromosoma 99: 111–117.

    Google Scholar 

  • Li, H. & P. M. Bingham, 1991. Arginine/Serine-Rich domain of the su(wa) and tra RNA processing regulators taret proteins to a subnuclear compartment implicated in splicing. Cell 67: 335–34.

    Google Scholar 

  • Lowndes, N. F., P. Bushel, J. W. Mendelsohn, M. Yen & M. Allan, 1990. A short, highly repetitive element in intron-1 of the human c-Ha-ras gene acts as a block to transcriptional readthrough by a viral promoter. Mol. Cel. Biol. 10: 4990–4995.

    Google Scholar 

  • Lozovskaya, E. R., V. Sh. Scheinker & Evgen'ev, 1990. A hybrid dysgenesis syndrome in Drosophila virilis. Genetics 126: 619–623.

    Google Scholar 

  • Lueders, K. & E. Kuff, 1989. Transposition of Intracisternal A-Particle Genes. Prog. Nucl. Acid Res. and Mol. Biol. 36: 173–186.

    Google Scholar 

  • Ma, T. S., J. Ifegwu, L. Watts, M. J. Siciliano, R. Roberts & B. Perryman, 1991. Serial Alu sequence transposition interrupting a human B creatine kinase pseudogene. Genomics 10: 390–399.

    Google Scholar 

  • Manuelidis, L., 1990. A view of interphase chromosomes. Science 250: 1533–1540.

    Google Scholar 

  • Manuelidis, L., 1991. Heterochromatic features of an 11-megabase transgene in brain cells. Proc. Natl. Acad. Sci. USA 88: 1049–1053.

    Google Scholar 

  • Maraia, R. J., 1991. The subset of mouse B1 (Alu-equivalent) sequences expressed as small processed cytoplasmatic transcripts. Nucl. Acids Res. 19: 5695–5702.

    Google Scholar 

  • Marchant, G. E. & D. G. Holm, 1988. Genetic analysis of the heterochromatin of chromosome 3 in Drosophila melanogaster. II. Vital loci identified through EMS mutagenesis. Genetics 120: 519–532.

    Google Scholar 

  • Markopoulov, K., W. J. Welshons & S. Artavonis-Tsakonas, 1989. Phenotypic and molecular analysis of the facets, a group of intronic mutations at the Notch locus of Drosophila melanogaster which affect postembryonic development. Genetics 122: 417–428.

    Google Scholar 

  • Marschalek, R., T. Brechner, E. Amon-Bohn and T. Dingermann, 1989. Transfer RNA genes: landmarks for integration of mobile genetic elements in Dictyostelium discoideum. Science 244: 1493–1496.

    Google Scholar 

  • Marschalek, R., G. Borschet & T. Dingermann, 1990. Genomic organization of the transposable element Tdd-3 from Dictyostelium discoideum. Nucl. Acids Res. 18: 5751–5757.

    Google Scholar 

  • Martin, CH. H. & E. M. Meyerowitz, 1988. Mosaic evolution in the Drosophila genome: Bioessays 9: nos 2 & 3.

  • Matassi, G., R. Melis, G. Macaya & G. Bernardi, 1991. Compositional bimodality of the nuclear genome of tobacco. Nucl. Acids Res. 19: 5561–5567.

    Google Scholar 

  • Mayr, E., 1969. Animal Species and Evolution. The Belknap Press of Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Mazo, A. M., L. J. Mizrokhi, A. A. Karavanov, A. A. Sedkov & Y. V. LLyin, 1989. Suppression in Drosophila: su(Hw) and su(f) gene products interacts with a region of gypsy (mdg4) regulating its-transcriptional activity. EMBO J. 8: 903–911.

    Google Scholar 

  • McArthur, J. G. & C. P. Stanners, 1991. A genetic element that increases the frequency of gene amplification. J. Biol. Chem. 266: 6000–6005.

    Google Scholar 

  • McArthur, J. G., L. K. Beitel, J. W. Chamberlain & C. P. Stanners, 1991. Elements which stimulate gene amplification in mammalian cells: role of recombinogenic sequences/structures and transcriptional activation. Nucl. Acids Res. 19: 2477–2484.

    Google Scholar 

  • McClintock, B., 1978. Mechanisms that rapidly reorganize the genome. Stadler Symp. 10: 25–47.

    Google Scholar 

  • McDonald, J. F., D. J. Strand. M. E. Lambert & I. B. Weinstein, 1987. The responsive genome: evidence and evolutionary implications, pp. 239–263 in Development as an Evolutionary Process, R. A. Raff & E. C. Raff. A. R. Liss (eds.), N.Y.

  • McDonald, J. F., 1990. Macroevolution and retroviral elements. Bioscience 40: 183–191.

    Google Scholar 

  • Mevel-Ninio, M., M. C. Mariol & M. Gans, 1989. Mobilization of the gypsy and copia retrotransposons in Drosophila melanogaster induces reversion of the ovo dominant femalesterile mutations: molecular analysis of revertant alleles. EMBO J. 8: 1549–1558.

    Google Scholar 

  • Michaille, J. J., S. Mathavan, J. Gaillard & A. Garel, 1990. The complete sequence of Mag, a new retrotransposon in Bombyx mori. Nucl. Acids Res. 18: 674.

    Google Scholar 

  • Miklos, G. L. & J. N. Costell, 1990. Chromosome structure at the interface between major chromatin types: alpha- and beta-heterochromatin. BioEssays 12: 1–6.

    Google Scholar 

  • Mizrokhi, L. J. & A. M. Mazo, 1990. Cloning and analysis of the element gypsy from D. virilis. Nuc. Acids Res. 19: 913–916.

    Google Scholar 

  • Mizrokhi, L. J., L. A. Obolenkova, A. F. Priimagi, Y. V. Ilyin, T. I. Gerasimova & G. P. Georgiu, 1985. The nature of unstable insertion mutations and reversion in the locus cut of Drosophila melanogaster: molecular mechanism of transpostion memory. EMBO J. 4: 3781–3787.

    Google Scholar 

  • Mori, I., D. G. Moerman & R. H. Waterston, 1988. Analysis of a mutator activity necessary for germline transposition and excision of Tc1 transposable elements in Caenorhabditis elegans. Genetics 120: 397–407.

    Google Scholar 

  • Moyzis, R. K., J. M. Buckingham, L. S. Cram, M. Dani, L. L. Deaven, M. D. Jones, J. Meyne, R. L. Ratliff & J. R. Wu, 1988. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA 85: 6622–6626.

    Google Scholar 

  • Moyzis, R. K., D. C. Torney, J. Meyne, J. M. Buckingham, J-R. Wu, CH. Burks, K. M. Sirotkin & W. B. Goad, 1989. The distribution of interpersed repetitive DNA sequences in the human genome. Genomics 4: 273–289.

    Google Scholar 

  • Nasir, J., E. M. C. Fisher, N. Brockdorff, C. M. Disteche, M. F. Lyon & S. D. M. Brown, 1990. Unusual molecular characteristics of a repeat sequence island within a Giemsa-positive band on the mouse X chromosome. Proc. Natl. Acad. Sci. USA 87: 399–403.

    Google Scholar 

  • Nasir, J., M. K. Maconochie & S. D. M. Brown, 1991. Coamplification of L1 Line elements with localised low copy repeats in Giemsa dark bands: implications for genome organisation. Nucl. Acids Res. 19: 3255–3260.

    Google Scholar 

  • O'Hare, K., M. R. K. Alley, T. E. Cullingford, A. Driver & M. J. Sanderson, 1991. DNA sequence of the Doc retroposon in the white-one mutant of Drosophila melanogaster and of secondary insertions in the phenotypically altered derivaties white-honey and white-eosin. Mol. Gen. Genet 225: 17–24.

    Google Scholar 

  • Okada, N., 1991. SINEs: Short interspersed repeated elements of the eukaryotic genome. TREE 11: 358–361.

    Google Scholar 

  • Oliviero, S. & P. Monaci, 1988. RNA polymerase III promoter elements ehance transcription of RNA polymerase II genes. Nucl. Acids Res. 16: 1285–1293.

    Google Scholar 

  • Olmo, E., 1991. Genome variations in the transition from amphibians to reptiles. J. Mol. Evol. 33: 68–75.

    Google Scholar 

  • Orgel, L. E. and F. H. C. Crick, 1980. Selfish DNA: The ultimate parasite. Nature 284: 604–607.

    Google Scholar 

  • Paolella, G., M. A. Lucero, M. H. Murphy & F. E. Baralle, 1983. The Alu family repeat promoter has a tRNA-like bipartite structure. EMBO J. 2: 691–696.

    Google Scholar 

  • Paquin, C. E. & Y. M. Williamson, 1984. Temperature effects on the rate of Ty transposition. Science 226: 53–55.

    Google Scholar 

  • Pardue, M. I., 1991. Dynamic instability of chromosomes and genomes. Cell 66: 427–431.

    Google Scholar 

  • Parkhurst, S. M. & V. G. Corces, 1987. Developmental expression of Drosophila melanogaster retrovirus-like transposable elements. EMBO J. 6: 419–424.

    Google Scholar 

  • Parkhurst, S. M., D. A. Harrison, M. P. Remington, C. Spana, R. L. Kelly, R. S. Coyne & V. G. Corces, 1988. The Drosophila Su (Hw) gene, which controls the phenotypic effects of the gypsy transposable element, encodes a putative DNA-binding protein. Genes Dev. 2: 1205–1215.

    Google Scholar 

  • Pearson, W. R., T. Mukai & J. F. Morrow, 1981. Repeated DNA sequences near the 5′-end of the silk fibroin gene. J. Biol. Chem. 256: 4033–4041.

    Google Scholar 

  • Peng, X. & S. M. Mount, 1990. Characterization of Enhancer-of-white-apricot in Drosophila melanogaster. Genetics 126: 1061–1069.

    Google Scholar 

  • Perrin, P. & G. Bernardi, 1987. Directional fixation of mutations in vertebrate evolution. J. Mol. Evol. 26: 301–310.

    Google Scholar 

  • Pfeifer, F. & U. Blaseio, 1990. Transposition burst of the ISH27 insertion element family in Halobacterium halobium. Nucl. Acids Res. 18: 6921–6925.

    Google Scholar 

  • Pommier, Y., P. N. Cockerill, K. W. Kohn & W. T. Garrard, 1990. Identification within the Simian Virus 40 genome of a chromosomal loop attachment site that contains topoisomerase II cleavage sites. J. Virol. 64: 419–423.

    Google Scholar 

  • Rabinow, L. & J. Birchler, 1990. Interactions among modifiers of retrotransposon-induced alleles of the white locus of Drosophila melanogaster. Genet. Res. Camb. 55: 141–151.

    Google Scholar 

  • Read, C. M., V. A. Patel & T. Moss, 1989. Coordinate replication of dispersed repetitive sequences in Pysarum polycephalum. Exp. Cell. Res. 181: 505–517.

    Google Scholar 

  • Rogers, J. H., 1985. The origin and evolution of retroposons. Int. Rev. Cytol. 93: 187–279.

    Google Scholar 

  • Sakamoto, K., C. M. Fordis, CH. D. Corsico, T. H. Howard & B. H. Howard, 1991. Modulation of HeLa cell growth by transfected 7SL RNA and Alu gene sequences. J. Biol. Chem. 266: 3031–3038.

    Google Scholar 

  • Sandmeyer, S. B., L. J. Hansen & D. L. Chalker, 1990. Integration specificity of retrotransposons and retroviruses. Annu. Rev. Genet. 24: 491–518.

    Google Scholar 

  • Schiff, R., A. Itin & Eli Keshet, 1991. Transcriptional activation of mouse retrotransposons in vivo: specific expression in steroidogenic cells in response to trophic hormones. Genes Dev. 5: 521–532.

    Google Scholar 

  • Schmid, C. W., 1991. Human Alu subfamilies and their methylation revealed by blot hybridization. Nucl. Acids Res. 19: 5613–5617.

    Google Scholar 

  • Schneeberger, R. G. & Ch. A. Cullis, 1991. Specific DNA alterations associated with the environmental induction of heritable changes in flax. Genetics 128: 619–630.

    Google Scholar 

  • Shenkar, R., M. Shen & Arnhein, 1991. DNase I-Hypersensitive sites and transcription factor-binding motifs within the mouse EB meiotic recombination hot spot. Mol. Cell Biol. 11: 1813–1819.

    Google Scholar 

  • Shevelyov, Yu. Ya., M. D. Balakireva & V. D. Guozdev, 1989. Heterochromatic regions in different Drosophila melanogaster stocks contain simular arrangements of moderate repeats with inserted copia-like elements (MDGI). Chromosoma 98: 117–122.

    Google Scholar 

  • Shiroishi, T., N. Hanzawa, T. Sagai, M. Ishiura, T. Gojobori, M. Steinmetz & K. Moriwaki, 1990. Recombinational hotspot specific to female meiosis in the mouse major histocompatibility complex. Immunogenet. 31: 79–88.

    Google Scholar 

  • Singer, M. F., 1982. SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell. 28: 433–434.

    Google Scholar 

  • Slagel, V., E. Flemington, V. Traina-Dorge, H. Bradshaw & P. Deininger, 1987. Clustering and Subfamily relationships of the Alu family in the Human Genome. Mol. Biol. Evol. 4: 19–29.

    Google Scholar 

  • Spana, C. D., D. A. Harrison & V. G. Corces, 1988. The Drosophila melanogaster suppressor of Hairy Wing protein binds to specific sequences of the gypsy retrotransposon. Genes Dev. 2: 1414–1423.

    Google Scholar 

  • Spencer, W. P., 1935. The non-random nature of visible mutations in Drosophila. Am. Nat. 69: 223–238.

    Google Scholar 

  • Springer, M. S., E. H. Davidson & R. J. Britten, 1991. Retroviral-like element in a marine invertebrate. Proc. Natl. Acad. Sci. USA. 88: 8401–8404.

    Google Scholar 

  • Stacey, S. N., R. A. Lansman, H. W. Brockand & T. A. Grigliatti, 1986. Distribution and conservation of mobile elements in the genus Drosophila. Mol. Biol. Evol. 3: 522–534.

    Google Scholar 

  • Steitz, J. A., D. L. Black, V. Gerke, K. Parker, A. Kramer, D. Frendewey & W. Keller, 1988. Functions of abundant UsnRNPs, pp. 115–154 in Structure and Function of Major and Minor snRNPs, edited by M. L. Birnstiel. Springer, Heidelberg.

    Google Scholar 

  • Strand, D. J. & J. F. McDonald, 1985. Copia is transcriptionally responsive to environmental stress. Nucl. Acids Res. 13: 4401–4410.

    Google Scholar 

  • Strand, D. J. & J. F. McDonald, 1989. Insertion of a copia element 5′ to the Drosophila melanogaster alcohol dehydrogenase gene (adh) is associated with altered developmental and tissue-specific patterns of expression. Genetics 121: 787–794.

    Google Scholar 

  • Strayer, D., N. Heintz, R. Roeder & D. Gillespie, 1983. Three organizations of human DNA. Proc. Natl. Acad. Sci. USA 80: 4770–4774.

    Google Scholar 

  • Suzuki, N., T. Fujiyoshi, Y. Maehara, K. Takahashi, M. Yamamoto & H. Endo, 1986. A new family of LTR-like sequences expressed in rat tumors. Nucl. Acids Res. 14: 9271–9289.

    Google Scholar 

  • Soriano, P., M. Meunier-Rotival & G. Bernardi, 1983. The distribution of interspersed repeats is nonuniform and conserved in the mouse and human genomes. Proc. Natl. Acad. Sci. USA 80: 1816–1820.

    Google Scholar 

  • Sylla, B. S., D. Allard, G. Roy, D. Bourgaux-Ramoisy & P. Bourgaux, 1984. A mouse DNA sequence that mediates integration and excision of polyoma virusDNA. Gene 29: 343–350.

    Google Scholar 

  • Tanda, S. & V. G. Corces, 1991. Retrotransposons-induced overexpression of a homeobox gene causes defects in eye morphogenesis in Drosophila. EMBO J. 10: 407–417.

    Google Scholar 

  • Tanda, S., A. E. Shrimpton, C. Ling-Ling, H. Itayama, H. Matsubsayashi, K. Saigo, Y. N. Tobari & C. H. Langley, 1988. Retrovirus-like features and site specific insertions of a transposable element, tom in Drosophila ananassae. Mol. Gen. Genet. 214: 204–411.

    Google Scholar 

  • Tartof, K. D. & S. Henikoff, 1991. Trans-sensing effects from Drosophila to humans. Cell 65: 201–203.

    Google Scholar 

  • Taruscio, D. and L. Manuelidis, 1991. Integration site preferences of endogenous retroviruses. Chromosoma. 101: 141–156.

    Google Scholar 

  • Taylor, K. D. & L. Piko, 1987. Patterns of mRNA prevalence and expression of B1 and B2 transcripts in early mouse embryos. Development 101: 877–892.

    Google Scholar 

  • Templeton, A. R., H. Hollcher & S. Lawer, 1989. Natural selection and ribosomal DNA in Drosophila. Genome, 31: 296–303.

    Google Scholar 

  • Tiedge, H., R. T. Fremeau, P. H. Weinstock & O. Arancio, 1991. Dendritic location of neural BC1 RNA. Proc. Natl. Acad. Sci. USA. 88: 2093–2097.

    Google Scholar 

  • Tobler, H., 1986. The differentiation of germinal and somatic cell lines in nematodes, pp. 1–70. In: Germline-Soma Differentiation. Edited by W. Hennig. Springer-Verlag, N.Y.

    Google Scholar 

  • Tomilin, N. V., S. M. M. Iguchi-Ariga & H. Ariga, 1990. Transcription and replication silencer elements are present within conserved region of human Alu repeats interacting with nuclear protein. FEBs Letters 263: 69–72.

    Google Scholar 

  • Ueda, H., S. Mizuno & K. Shimura, 1986. Transposable genetic element found in the 5′-flanking region of the fibroin H-chain gene is a genomic clone from the silkworm Bombyx mori. J. Mol. Biol. 190: 319–327.

    Google Scholar 

  • Uehara, H., T. Ebersole, D. Bennett & K. Artzt, 1990. Submegabase clusters of unstable tandem repeats unique to the Tla region of mouse t haplotypes. Genetics 126: 1093–1102.

    Google Scholar 

  • Usdin, K. & A. V. Furano, 1989. Insertion of L1 elements into sites that can form Non-B DNA. J. Biol. Chem. 264: 20736–20743.

    Google Scholar 

  • Valgeirsdotter, K., K. Troverse & M. L. Pardue, 1990. HeT DNA: A family of mosaic repeated sequences specific for heterochromatin. Proc. Natl. Acad. Sci. USA. 87: 7998–8002.

    Google Scholar 

  • Vanlerberghe, F., B. Dod, P. Boursot, M. Bellis & F. Bonhomme, 1986. Absence of Y-chromosome introgression across the hybrid zone between Mus musculus domesticus and Mus musculus musculus. Genet. Res. Camb 48: 191–197.

    Google Scholar 

  • Vaury, Ch., A. Bucheton & A. Pelisson, 1989. The B heterochromatic sequences flanking the I elements are themselves defective transposable elements. Chromosoma 98: 215–224.

    Google Scholar 

  • Voelker, R. A., J. Graves, W. Gibson & M. Eisenberg, 1990. Mobile element insertions causing mutations in the Drosophla suppressor of sable locus occur in DNase I hypersensitive subregions of 5′ transcribed nontranslated sequences. Genetics 126: 1071–1082.

    Google Scholar 

  • Vogt, P. & W. Hennig, 1986a. Molecular structure of the lampbrush loops nooses of the Y chromosome of Drosophila hydei. Chromosoma 94: 459–467.

    Google Scholar 

  • Vogt, P. & W. Hennig, 1986b. Molecular structure of the lampbrush loops nooses of the Y chromosome of Drosophila hydei. Chromosoma 94: 449–458.

    Google Scholar 

  • Vogt, P., W. Hennig, D.ten Hacken & P. Verbost, 1986. Evolution of Y chromosomal lampbrush loop DNA sequences of Drosophila. Chromosoma 94: 367–376.

    Google Scholar 

  • Vogt, P., 1990. Potential genetic functions of tandem repeated DNA sequence blocks in the human genome are based on a highly conserved ‘chromatin folding code’. Hum. Genet. 84: 301–336.

    Google Scholar 

  • Wakimoto, B. T. & M. G. Hearn, 1990. The effects of chromosome rearrangements on the expression of heterochromatic genes in chromosome 2L of Drosophila melanogaster. Genetics 125: 141–154.

    Google Scholar 

  • Wilson, E. T., D. P. Condliffe & K. U. Sprague, 1988. Transcriptional properties of BmX, a moderately repetitive silkworm gene that is an RNA polymerase III template. Mol. Cell. Biol. 8: 624–631.

    Google Scholar 

  • White, M. J. D., 1973. Animal Cytology and Evolution. Edited by Cambridge at the University Press.

  • Wu, J., J. Grindlay, P. Bushe, L. Mendelsohn & M. Allan, 1990. Negative regulation of the human E-globin gene by transcriptional interference: role of an Alu repetitive element. Mol. Cell. Biol. 10: 1209–1216.

    Google Scholar 

  • Xiong, Y. & T. H. Eickbush, 1988. Functional expression of a sequence-specific endonuclease encoded by the retrotransposon R2Bm. Cell 55: 235–246.

    Google Scholar 

  • Yao, M-C., 1989. Site-specific chromosome breakage and DNA deletion in ciliates, pp. 715–734 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society for Microbiology, Wash. D.C.

    Google Scholar 

  • Yao, M. Ch., Ch. H. Yoa & B. Monks, 1990. The controlling sequence for site-specific chromosome breaskage in tetrahymena. Cell 63: 763–772.

    Google Scholar 

  • Young, M. W., 1979. Middle repetitive DNA: a fluid component of the Drosophila genome. Proc. Natl. Acad. Sci. USA 88: 8401–8404.

    Google Scholar 

  • Zachar, Z., D. Davison, D. Garza & P. M. Bingham, 1985. A detailed developmental and structural study of the transcriptional effects of insertion of the copia transposon into the white locus of Drosophila melanogaster. Genetics 111: 495–515.

    Google Scholar 

  • Zakian, V. A., K. Runge & S. Wang, 1990. How does the end begin? TIG. 6: 12–16.

    Google Scholar 

  • Ziarczyk, P. & M. Best-Belpomme, 1991. A short 5′ region of the long terminal repeat is required for regulation by hormone and heat shock of Drosophila retrotransposon 1731. Nucl. Acids. Res. 19: 5689–5693.

    Google Scholar 

  • Zimmerer, E. J. & H. C. Passmore, 1991. Structural and genetic properties of the EB recombinational hotspot in the mouse. Immunogenet. 33: 132–140.

    Google Scholar 

  • Zuckerkandl, E., 1986. Polite DNA: functional density and functional compatibility in genomes. J. Mol. Evol. 24: 12–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Sternberg, R.M., Novick, G.E., Gao, G.P. et al. Genome canalization: the coevolution of transposable and interspersed repetitive elements with single copy DNA. Genetica 86, 215–246 (1992). https://doi.org/10.1007/BF00133722

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00133722

Keywords