Skip to main content

Expression of mRNA for Akt, serine-threonine protein kinase, in the brain during development and its transient enhancement following axotomy of hypoglossal nerve

  • Original Articles
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Byin situ hybridization histochemistry, expression of mRNAs for the two species of serine/threonine protein kinase Akt, Akt1 and Akt2, were examined in the mouse brain during normal development and in the hypoglossal nucleus following axotomy. On the embryonic days, the gene expression for Akt1 and Akt2 was detected at high levels throughout the entire neuroaxis, then decreased gradually to adult levels during postnatal development. In the adult brain, the gene expression for Akt1 and Akt2 was weak in almost all neurons with no difference of expression levels. The expression level of Akt1 mRNA in the affected hypoglossal nucleus increased dramatically after 48 h to 7 d following axotomy of the hypoglossal nerve, whereas no change was seen in the level of Akt2 mRNA. The present findings suggest that Akt may contribute some important roles not only in neurogenesis, but also in regeneration of injured neuron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altomare D. A., Guo K., Cheng T. O., Makris A., Yang S. I., Kaplan D. R., Morrison D. K., Golemis E. A., and Tsichlis P. N. (1995). Cloning, chromosomal localization and expression analysis of the mouse AKT2 oncogene.Oncogene 11, 1055–1060.

    PubMed  CAS  Google Scholar 

  • Bellacosa A., Testa J. R., Staal S. P., and Tsichlis P. N. (1991) A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region.Science 254, 274–277.

    Article  PubMed  CAS  Google Scholar 

  • Bellacosa, A., Franke, T. F., Gonzalez-Portal M. E., Datta K., Taguchi T., Gardner J., Chen J. Q., Testa J. R., and Tsichlis P. N. (1993) Structure, expression and chromosomal mapping of c-akt: relationship to v-akt and its implication.Oncogene 8, 745–754.

    PubMed  CAS  Google Scholar 

  • Burgering B. M. and Coffer P. J. (1995) Protein kinase B(c-Akt) in phosphatidylinositol-3-OH kinase signal transduction.Nature 376, 599–602.

    Article  PubMed  CAS  Google Scholar 

  • Carter A. N. and Downes C. P. (1992) Phosphatidylinositol 3-kinase is activated by nerve growth factor and epidermal growth factor in PC12 cells.J. Biol. Chem. 267, 14,563–14,567.

    CAS  Google Scholar 

  • Carpenter C. L. and Cantley L. C. (1996) Phosphoinositide kinases.Curr. Opin. Cell Biol. 8, 153–158.

    Article  PubMed  CAS  Google Scholar 

  • Cheng J. Q., Godwin, A. K., Bellacossa A., Taguchi T., Franke T. F., Hamilton T. C., Tsichlis P. N., and Testa J. R. (1992) Akt2, a putative oncogene encoding a member of a subfamily of protein serine/threonine protein kinases, is amplified in human ovarian carcinomas.Proc. Natl. Acad. Sci. USA 89, 9267–9271.

    Article  PubMed  CAS  Google Scholar 

  • Coffer P. J. and Woodgett J. R. (1991) Molecular cloning and characterization of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families.Eur. J. Biochem. 201, 475–481.

    Article  PubMed  CAS  Google Scholar 

  • Datta K., Franke T. S., Chan T. O., Makris A., Yang S., Kaplan D. R., Morrison D. K., Golemis E. A., and Tsichlis P. N. (1995) AH/PH domain-mediated interaction between Akt molecules and its potential role in Akt regulation.Mol. Cell. Biol. 15, 2304–2310.

    PubMed  CAS  Google Scholar 

  • Dudek H., Datta S. R., Franke T. F., Birnbaum M. J., Yao R., Cooper G. M., Segal R. A., Kaplan D. R., and Greenberg M. E. (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt.Science 275, 661–665.

    Article  PubMed  CAS  Google Scholar 

  • Franke T. F., Tartof K. D., and Tsichlis P. N. (1994) The SH2-like Akt homology (AH) domain of c-akt is present in multiple copies in the genome of vertebrate and invertebrate eucaryotes. Cloning and characterization of the Drosophila melanogaster c-akt homolog Dakt1.Oncogene 9, 141–148.

    PubMed  CAS  Google Scholar 

  • Franke T. F., Yang S, Chang T. O., Datta K., Kazlauskas A., Morrison D. K., Kaplan D. R., and Tsichlis P. N. (1995) The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase.Cell 81, 727–736.

    Article  PubMed  CAS  Google Scholar 

  • Franke T. F., Kaplan D. R., Cantley L. C., and Toker A. (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate.Science 275, 665–668.

    Article  PubMed  CAS  Google Scholar 

  • Ito, Y., Goto K., and Kondo H. (1995) Localization of mRNA for phosphatidylinositol 3-kinase in brain of developing and mature rats.Mol. Brain Res. 34, 149–153.

    Article  PubMed  CAS  Google Scholar 

  • Ito, Y., Sakagami H., and Kondo H. (1996) Enhanced gene expression for phosphatidylinositol 3-kinase in the hypoglossal motoneurons following axonal crush.Mol. Brain Res. 37, 329–332.

    Article  PubMed  CAS  Google Scholar 

  • Kimura K., Hattori S., Kabuyama Y., Shizawa Y., Takayanagi J., Nakamura S., Toki S., Matsuda Y., Onodera K., and Fukui Y. (1994) Neurite outgrowth of PC12 cells is suppressed by wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase.J. Biol. Chem. 269, 18,961–18,967.

    CAS  Google Scholar 

  • Klippel A., Kavanaugh W. M., Pot D., and Williams L. (1997) A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain.Mol. Cell. Biol. 17, 338–344.

    PubMed  CAS  Google Scholar 

  • Lemmon M. A., Ferguson K. M., and Schlessinger J. (1996) PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface.Cell 85, 621–624.

    Article  PubMed  CAS  Google Scholar 

  • Li Y., Chopp M., Jiang N., and Zaloga C. (1995) In situ detection of DNA fragmentation after focal cerebral ischemia in mice.Mol. Brain Res. 28, 164–168.

    Article  PubMed  CAS  Google Scholar 

  • Parrizas M., Saltie A. R., and Leroith D. (1997) Insulin-like growth factor I, inhibits apoptosis using the phosphatidylinositol 3-kinase and mitogen activating protein kinase pathways.J. Biol. Chem. 272, 154–161.

    Article  PubMed  CAS  Google Scholar 

  • Pollard H., Cantagrel S., Charriaut-Marlangue C., Moreau J., and Ben Ari Y. (1994) Apoptosis associated DNA fragmentation in epileptic brain damage.Neuroreport 5, 1053–1055.

    Article  PubMed  CAS  Google Scholar 

  • Soltoff S. P., Rabin S. L., Cantley L. C., and Kaplan D. R. (1992) Nerve growth factor promotes the activation of phosphatidylinositol 3-kinase and its association with the trk tyrosine kinase.J. Biol. Chem. 267, 17,472–17,477.

    CAS  Google Scholar 

  • Staal S. P. (1987) Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma.Proc. Natl. Acad. Sci. USA 84, 5034–5037.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owada, Y., Utsunomiya, A., Yoshimoto, T. et al. Expression of mRNA for Akt, serine-threonine protein kinase, in the brain during development and its transient enhancement following axotomy of hypoglossal nerve. J Mol Neurosci 9, 27–33 (1997). https://doi.org/10.1007/BF02789392

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789392

Index Entries