Abstract
HIV is an RNA virus that replicates intracellularly through various RNA intermediates. Several of these can be targeted by ribozymes (catalytic RNA molecules), and a number of investigators, including this group, have demonstrated the ability of ribozymes to suppress HIV replication in this way. It is argued that this gene therapy approach may be viewed as an adjunct to chemotherapeutic drugs, which may allow not just viral suppression, but also immune restoration. This can only finally be tested in clinical trials, and several are planned. The basic ribozyme unit, the potential of which was described less than 10 years ago, is about to be tested in an amenable disease state.
Similar content being viewed by others
References
Baltimore, D. (1995) The enigma of HIV infection.Cell 82, 175,176.
Barré-Sinoussi, F. (1996) HIV as the cause of AIDS.The Lancet 348, 31–35.
McCune, J. M. (1995) Viral latency in HIV disease.Cell 82, 183–188.
Weiss, R. A. (1993) How does HIV cause AIDS?Science 260, 1273–1279.
Johnston, M. I. and Holt, D. F. (1993) Present status and prospects for HIV therapies.Science 260, 1286–1293.
Fauci, A. S. (1993) Multifactorial nature of HIV disease: implications for therapy.Science 262, 1011–1018.
Pantaleo, G., Graziosi, C., Butini, L., Pizzo, P. A., Schnittman, S. M., Kolter, D. P., and Fauci, A. S. (1989) Lymphoid organs function as major reservoirs for human immunodeficiency virus.Proc. Natl. Acad. Sci. USA 88, 9838–9842.
Ho, D. D., Moudgil, T., and Alam, M. (1989) Quantitation of human immunodeficiency virus type 1 in the blood of infected persons.N. Engl. J. Med. 321, 1621–1625.
Saag, M. S., Crain, M. J., Decker, W. D., Campbell-Hill, S., Robinson, S., Brown, W. E., Leuther, M., Whiteley, R. J., Hahn, B. H., and Shaw, G. M. (1991) High-level viremia in adult and children infected with human immunodeficiency virus: relation to disease stage and CD4+ lymphocyte levels.J. Infect. Dis. 164, 72–80.
Clark, S. J., Saag, M. S., Decker, W. D., Campbell-Hill, S., Roberson, J. L., Veldkamp, P. J., Kappes, J. C., Hahn, B. H., and Shaw, G. M. (1991) High titiers of cytopathic virus in plasma of patients with symptomatic primary HIV-1 infection.N. Engl. J. Med. 324, 954–960.
Daar, E. S., Moudgil, T., Meyer, R. D., and Ho, D. D. (1991) Transient high levels of viremia in patients with primary human immunodeficiency virus type 1 infection.N. Engl. J. Med. 324, 961–964.
Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M., and Markowitz, M. (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection.Nature (Lond.) 373, 123–126.
Wei, X., Ghosh, S. K., Taylor, M. E., Johnson V. A., Emini, E. A., Deutsch, P., Lifson, J. D., Bonhoeffer, S., Nowak, M. A., Hahn, B. H., Saag, M. S., and Shaw, G. M. (1995) Viral dynamics in human immunodeficiency virus type 1 infection.Nature (Lond.) 373, 117–122.
Varmus, H. (1988) Regulation of HIV and HTLV gene expression.Genes & Dev. 2, 1055–1062.
Trono, D. (1995) HIV accessory proteins: leading roles for the supporting cast.Cell 82, 189–192.
Dimitrov, D. S. (1996) Fusin—a place for HIV-1 and T4 cells to meet.Nature Med. 2, 640,641.
Feng, Y., Broder, C. C., Kennedy, P. E., and Berger, E. A. (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein coupled receptor.Science 272, 872–876.
Cooper, D. A. and Merigan, T. C. (1996) Clinical treatment.AIDS 10 Supp. A., S133, S134.
Coreh, L. and Holmes, K. K. (1996) Therapy for human immunodeficiency virus infection—what have we learned?N. Engl. J. Med. 335, 1142, 1143.
Bridges, S. H. and Sarver, N. (1995) Gene therapy and immune restoration for HIV disease.The Lancet 345, 427–432.
Maciejewski, J. P., Weichold, F. F., Young, N. S., Cara, A., Zella, D., Retiz, M. S., Jr, and Gallo, R. C. (1995) Intracellular expression of antibody fragments directed against HIV reverse transcriptase prevents HIV infectionin vitro.Nature Med. 1, 667–673.
Shaheen, F., Duan, L., Zhu, M., Bagasra, O., and Pomerantz, R. J. (1996) Targeting human immuno-deficiency virus type 1 reverse transcriptase by intracellular expression of single-chain variable fragments to inhibit early stages of the viral life cycle.J. Virol. 70, 3392–3400.
Cohen, J. S. (ed.) (1989)Oligodeoxynucleotides: Antisense Inhibitors of Gene Expression. CRC, Boca Raton, FL.
Smythe, J. A. and Symonds, G. (1995) Gene therapeutic agents: the use of ribozymes, antisense and RNA decoys for HIV-1 infection.Inflamm. Res. 44, 11–15.
Escaich, S., Kalfoglou, C., Plavec, I., Kaushal, S., Mosca, J. D., and Böhnlein, E. (1995) RevM10-mediated inhibition of HIV-1 replication in chronically infected T cells.Hum. Gene Ther. 6, 625–634.
Woffendin, C., Yang, Z.-Y., Udaykumar, R., Xu, L., Yang, N.-S., Sheehy, M. J., and Nabel, G. J. (1994) Nonviral and viral delivery of a human immunodeficiency virus protective gene into primary human T cells.Proc. Natl. Acad. Sci. USA 91, 11,581–11,585.
Caputo, A., Grossi M. P., Bozzini, R., Rossi, C., Betti, M., Marconi, P. C., Barbanti-Brodano, G., and Balboni, P. G. (1996) Inhibition of HIV-1 replication and reactivation from latency by tat transdominant negative mutants in the cysteine rich region.Gene Ther. 3, 235–245.
Lisziewicz, J., Sun, D., Lisziewicz, A., and Gallo, R. C. (1995) Antitat gene therapy: a candidate for latestage AIDS patients.Gene Ther. 2, 218–222.
Aguilar-Cordova, E., Chinen, J., Donehower, L. A., Harper, J. W., Rice, A. P., Butel, J. S., and Belmont, J. W. (1995) Inhibition of HIV-1 by a double transdominant fusion gene.Gene Ther. 2, 181–186.
Lee, S. W., Gallardo, H. F., Gilboa, E., and Smith, C. (1994) Inhibition of human immunodeficiency virus type 1 in human T cells by a potent Rev response element decoy consisting of the 13 nucleotide minimal Rev binding domain.J. Virol. 68, 8254–8264.
Lisziewicz, J., Sun, D., Smythe, J., Lusso, P., Lori, F., Louie, A., Markham, P., Rossi, J., Reitz, M., and Gallo, R. C. (1993) Inhibition of human immunodeficiency virus type 1 replication by regulated expression of a polymeric Tat activation response RNA decoy as a strategy for gene therapy for AIDS,Proc. Natl. Acad. Sci. USA 90, 8000–8004.
Kuwabara, T., Amontov, S. V., Warashina, M., Ohkawa, J., and Taira, K. (1996) Characterization of several kinds of dimer minizyme: simultaneous cleavage at two sites in HIV-1 tat mRNA by dimer minizymes.Nucleic Acids Res. 24, 2302–2310.
Rossi, J. J., Elkins, D., Zaia, J. A., and Sullivan, S. (1992) Ribozymes as anti-HIV-1 therapeutic agents: principles, applications, and problems,AIDS Res. Hum. Retroviruses 8, 183–189.
Sun, L.-Q., Warrilow, D., Wang, L., Witherington, C., Macpherson, J., and Symonds, G. (1994) Ribozyme-mediated suppression of Moloney murine leukemia virus and human immunodeficiency virus type 1 replication in permissive cell lines.Proc. Natl. Acad. Sci. USA 91, 9715–9719.
Sioud, M. and Drlica, K. (1991) Prevention of human immunodeficiency virus type 1 integrase expression inEscherichia coli by a ribozyme.Proc. Natl. Acad. Sci. USA 88, 7303–7307.
Heidenreich, O. and Eckstein, F. (1992) Hammerhead ribozyme-mediated cleavage of the long terminal repeat RNA of human immunodeficiency virus type 1.J. Biol. Chem. 267, 1904–1909.
Crisell, P., Thompson, S., and James, W. (1993) Inhibition of HIV-1 replication by ribozymes that show poor activity in vitro.Nucleic Acids Res. 21, 5251–5255.
Rossi, J. J., Cantin, E. M., Sarver, N., and Chang, P. F. (1991) The potential use of catalytic RNAs in therapy of HIV infection and other diseases.Pharmacol. Ther. 50, 245–254.
Homann, M., Tzortzakaki, S., Rittner, K., Sczakiel, G., and Tabler, M. (1993) Incorporation of the catalytic domain of a hammerhead ribozyme into antisense RNA enhances its inhibitory effect on the replication of human immunodeficiency virus type 1.Nucleic Acids Res. 21, 2809–2814.
Sun, L.-Q., Pyati, J., Smythe, J., Wang, L., Macpherson, J., Gerlach, W., and Symonds, G. (1995) Resistance to human immunodeficiency virus type 1 infection conferred by transduction of human peripheral blood lymphocytes with ribozyme, antisense or polymeric transactivation response element constructs.Proc. Natl. Acad. Sci. USA 92, 7272–7276.
Cech, T. (1987) The chemistry of self-splicing RNA and RNA enzymes.Science 236, 1532–1539.
Uhlenbeck, O. C. (1987) A small catalytic oligoribonucleotide.Nature (Lond.) 328, 596–600.
Forster, A. and Symons, R. (1987) Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites.Cell 49, 211–220.
Hampel, A., Nesbitt, S., Tritz, R., and Altschuler, M. (1993) The hairpin ribozyme.Methods Enzymol. 5, 37–42.
Haseloff, J. and Gerlach, W. L. (1988) Simple enzymes with new and highly specific endoribonuclease activity.Nature (Lond.) 334, 585–591.
Hertel, K. J., Herschlag, D., and Uhlenbeck, O. C. (1996) Specificity of hammerhead ribozyme cleavage.EMBO J. 14, 3751–3757.
Rossi, J. J. (1992) Ribozymes.Curr. Opinion Biotechnol. 3, 3–7.
James, W. and Al-Shamkhani, A. (1995) RNA enzymes as tools for gene ablation.Curr. Opinion Biotechnol. 6, 44–49.
Usman, N. and Stinchcomb, D. T. (1996) Design, synthesis, and function of therapeutic hammerhead ribozymes, inCatalytic RNA (Eckstein, F. and Lilley, D. M. J., eds.), Springer, Berlin, pp. 243–264.
Cohen, M. (1990) The in vivo application of ribozymes.TIBTECH,8, 174–179.
Lowenstein, P. and Symonds, G. (1997) Inhibition of Moloney murine leukemia virus by a retroviral vector carrying a ribozyme targeted to the packaging site.J. Gen. Virol., in press.
Sun, L.-Q., Wang, L., Gerlach, W. L., and Symonds, G. (1995) Target sequence-specific inhibition of HIV-1 replication by ribozymes directed to tat RNA.Nucleic Acids Res. 23, 2909–2913.
Koizumi, M., Ozawa, Y., Yagi, R., Nishigaki, T., Kaneko, M., Oka, S-i., Kimura, S., Iwamoto, A., Komatsu, Y., and Ohtsuka, E. (1995) Design and anti-HIV-1 activity of ribozymes that cleave HIV-1 LTR.Nucleic Acids Symp. Ser. 34, 125, 126.
Goodchild, J. and Kohli, V. (1991) Ribozymes that cleave an RNA sequence from human immunodeficiency virus: the effect of flanking sequence on rate.Arch. Biochem. Biophys. 284, 386–391.
Dropulic, B. and Jeang, K.-T. (1994) Intracellular susceptibility to ribozymes in a tethered substrateribozyme provirus model is not predicted by secondary structures of human immunodeficiency virus type 1 RNAsin vitro.Antisense Res. Dev. 4, 217–221.
Tabler, M., Homann, M., Tzortzakaki, S., and Sczakiel, G. (1994) A three-nucleotide helix I is sufficient for full activity of a hammerhead ribozyme: advantages of an asymmetric design.Nucleic Acids Res. 22, 3958–3965.
Homann, M., Tabler, M., Tzortzakaki, S., and Sczakiel, G. (1994) Extension of Helix II of an HIV-1-directed hammerhead ribozyme with long antisense flanks does not alter kinetic parametersin vitro but causes loss of the inhibitory potential in living cells.Nucleic Acids Res. 22, 3951–3957.
Leavitt, M. C., Yu, M., Yamada, O., Kraus, G., Looney, D., Poeschla, E., and Wong-Staal, F. (1994) Transfer of an anti-HIV-1 ribozyme gene into primary human lymphocytes.Hum. Gene Ther. 5, 1115–1120.
Yu, M., Ojwang, J., Yamada, O., Hampel, A., Rapapport, J., Looney, D., and Wong-Staal, F. (1993) A hairpin ribozyme inhibits expression of diverse strains of human immunodeficiency virus type 1.Proc. Natl. Acad. Sci. USA 90, 6340–6344.
Ojwang, J. O., Hampel, A., Looney, D. J., Wong-Staal, F., and Rappaport, J. (1992) Inhibition of human immunodeficiency virus type 1 expression by a hairpin ribozyme.Proc. Natl. Acad. Sci. USA 89, 10,802–10,806.
Yu, M., Leavitt, M. C., Maruyama, M., Yamada, O., Young, D., Ho, A. D., and Wong-Staal, F. (1995) Intracellular immunization of human fetal cord blood stem/progenitor cells with a ribozyme against human immunodeficiency virus type 1.Proc. Natl. Acad. Sci. USA 92, 699–703.
Yu, M. Poeschla, E., Yamada, O., Degrandis, P., Leavitt, M. C., Heusch, M., Yees, J.-K., Wong-Staal, F., and Hampel, A. (1995) In vitro and in vivo characterization of a second functional hairpin ribozyme against HIV-1.virology 206, 381–386.
Yamada, O., Kraus, G., Leavitt, M. C., Yu, M., and Wong-Staal, F. (1994) Activity and cleavage site specificity of an anti-HIV-1 hairpin ribozyme in human T cells.Virology 205, 121–126.
Chen, C.-J., Banerjea, A. C., Harmison, G. G., Haglund, K., and Schubert, M. (1992) Multitargetribozyme directed to cleave at up to nine highly conserved HIV-1 env RNA regions inhibits HIV-1 replication-potential effectiveness against most presently sequenced HIV-1 isolates.Nucleic Acids Res. 20, 4581–4589.
Sarver, N., Cantin, E. M., Chang, P. S., Zaia, J. A., Ladne, P. A., Stephens, D. A., and Rossi, J. J. (1990) Ribozymes as potential anti-HIV-1 therapeutic agents.Science 247, 1222–1225.
Dropulic, B., Lin, N. H., Martin, M. A., and Jeang, K.-T. (1992) Functional characterization of a U5 ribozyme: intracellular suppression of human immunodeficiency virus type 1 expression.J. Virol. 66, 1432–1441.
Lo, K. M. S., Biasolo, M. A., Dehni, G., Palú, G., and Haseltine, W. A. (1992) Inhibition of replication of HIV-1 by retroviral vectors expressing tat-antisense and anti-tat ribozyme RNA.Virology 190, 176–183.
Weerasinghe, M., Liem, S. E., Asad, S., Read, S. E., and Joshi, S. (1991) Resistance to human immunodeficiency virus type 1 (HIV-1) infection in human CD4+ lymphocyte-derived cell lines conferred by using retroviral vectors expressing an HIV-1 RNA-specific ribozyme.J. Virol. 65, 5531–5534.
Miller, A. D. and Rosman, G. J. (1989) Improved vecors for gene transfer and expression.BioTechniques 7, 980–986.
Jolly, D. (1994) Viral vector systems for gene therapy.Cancer Gene Ther. 1, 51–64.
Kavanaugh, M. P., Miller, D. G., Zhang, W., Law, W., Kozak, S. L., Kabat, D., and Miller, A. D. (1994) Cell-surface receptors for gibbon ape leukemia virus and amphotropic retrovirus are inducible sodium-dependent phosphate symporters.Proc. Natl. Acad. Sci. USA 91, 7071–7075.
Bums, J. C., Friedmann, T., Driever, W., Burrascano, M., and Yee, J. K. (1993) Vesicular stomatititis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into nonmammalian cells.Proc. Natl. Acad. Sci. USA 90, 8033–8037.
Von kalle, C., Kiem, H. P., Goehle, So, Darovsky, B., Heimfeld, S., Torokstorb, B., Storb, R., and Schuening, F. G. (1994) Increased gene transfer into human haematopoietic progenitor cells by extended in vitro exposure to pseudotyped retroviral vector.Blood 84, 2890–2897.
Kuzcyzka, N. (1992) Use of adeno-associated virus as a general transduction vector in mammalian cells.Curr. Top. Microbiol. Immunol. 158, 97–129.
Chatterjee, S., Johnson, P. R., and Wong, K. K., Jr. (1992) Dual-target inhibition of HIV-1in vitro by means of an adeno-associated virus antisense vector.Science 258, 1485–1488.
Carter, D. J. (1992) Adeno-associated virus vectors.Curr. Opinion Biotechnol. 3, 533–539.
Lever, A. M. L. (1996) HIV and other lentivirus-based vectors.Gene Ther. 3, 470,471.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Sun, LQ., Ely, J.A., Gerlach, W. et al. Anti-HIV ribozymes. Mol Biotechnol 7, 241–251 (1997). https://doi.org/10.1007/BF02740815
Issue Date:
DOI: https://doi.org/10.1007/BF02740815