Abstract
Transport defects may arise in various neurodegenerative diseases from failures in molecular motors, microtubule abnormalities, and the chaperone/proteasomal degradation pathway leading to aggresomal-lysosomal accumulations. These defects represent important steps in the neurodegenerative cascade, although in many cases, a clear consensus has yet to be reached regarding their causal relationship to the disease. A growing body of evidence lends support to a link between neurite transport defects in the very early stages of many neurodegenerative diseases and alterations in the organization and dynamics of the actin cytoskeleton initiated by filament dynamizing proteins in the ADF/cofilin family. This article focuses on cofilin, which in neurons under stress, including stress induced by the amyloid-β (Aβ) 1–42 peptide, undergoes dephosphorylation (activation) and forms rod-shaped actin boundles (rods). Rods inhibit transport, are sites of amyloid precursor protein accumulation, and contribute to the pathology of Alzheimer’s disease. Because rods form rapidly in response to anoxia, they could also contribute to synaptic deficits associated with ischemic brain injury (e.g., stroke). Surprisingly, cofilin undergoes phosphorylation (inactivation) in hippocampal neurons treated with Aβ1–40 at high concentrations, and these neurons undergo dystrophic morphological changes, including accumulation of pretangle phosphorylated-τ. Therefore, extremes in phosphoregulation of cofilin by different forms of Aβ may explain much of the Alzheimer’s disease pathology and provide mechanisms for synaptic loss and plaque expansion.
Similar content being viewed by others
References
Bazan, N. G., Palacios-Pelaez, R., and Lukiw, W. J. (2002). Hypoxia signaling to genes: significance in Alzheimer’s disease. Mol Neurobiol. 26(2–3), 283–298.
DeKosky, S. T. and Scheff, S. W. (1990). Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol. 27(5), 457–464.
Terry, R. D., Masliah, E., Salmon, D. P., et al. (1991). Physical basis of cognitive alterations in Alzheimer’s disease; synapse loss is the major correlate of cognitive impairment. Ann Neurol. 30(4), 572–580.
Coleman, P. D. and Yao, P. J. (2003). Synaptic slaughter in Alzheimer’s disease. Neurobiol Aging 24(8), 1023–1027.
Davies, C. A., Mann, D. M., Sumpter, P. Q., and Yates, P. O. (1987). A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s Disease. J Neurol Sci. 78(2), 151–164.
Minamide, L. S., Striegl, A.M., Boyle, J. A., Meberg, P. J., and Bamburg, J. R. (2000). Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nat Cell Biol. 2(9), 628–636.
Maloney, M. T., Kinley, A. W., Pak, C. W., and Bamburg, J. R. (2006). ADF/cofilin, actin dynamics and disease. In: dos Remedos C and Chhabra D, eds., Disorders Caused by Actin and Actin-binding Proteins New York: Wiley, in press.
Vetrivel, K. S. and Thinakaran, G. (2006). Amyloidogenic processing of beta-amyloid precursor protein in intracellular compartments. Neurology 66(2 Suppl 1), S69-S73.
Chyung, J. H., Raper, D. M., and Selkoe, D. J. (2005). Gamma-secretase exists on the plasma membrane as an intact complex that accepts substrates and effects intramembrane cleavage. J Biol Chem. 280(6), 4383–4392.
Ehehalt, R., Keller, P., Haass, C., Thiele, C., and Simons, K. (2003). Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol. 160(1), 113–123.
Glenner, G. G., and Wong, C. W. (1984). Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun. 122(3), 1131–1135.
Mattson, M. P. (2004). Pathways towards and away from Alzheimer’s disease. Nature 430, 631–639.
Tanzi, R. E. and Bertram, L. (2005). Twenty years of the Alzheimer’s Disease hypothesis: A genetic perspective. Cell 120, 545–555.
Schmechel, D. E., Saunders, A. M., Strittmatter, W. J., et al. (1993). Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci U S A 90, 9649–9653.
Strittmatter, W. J., Saunders, A. M., Schmechel, D., et al. (1993). Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 90(5), 1977–1981.
Glenner, G. G. and Wong, C. W. (1984). Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 120(3), 885–890.
Bernstein, B. W. and Bamburg, J. R. (2003). Actin-ATP hydrolysis is a major energy drain for neurons. J Neurosci. 23(1), 1–6.
Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K., and Uemura, T. (2002). Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108(2), 233–246.
Ghola, A., Birkenfield, J., and Bokoch, G. M. (2005). Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nature Cell Biol. 7(1), 21–29.
Huang, T. Y., DerMardirossian, C., and Bokoch, G. M. (2006). Cofilin phosphatases and regulation of actin dynamics. Curr Opin Cell Biol. 18(1), 26–31.
Hawkins, M., Pope, B., Maciver, S. K., and Weeds, A. G. (1993). The interaction of human actin depolymerizing factor with actin is pH regulated. Biochemistry 32(38), 9985–9993.
Hayden, S. M., Miller, P. S., Brauweiler, A., and Bamburg, J. R. (1993). Analysis of the interactions of actin depolymerizing factor with G- and F-actin. Biochemistry 32(38), 9994–10,004.
Carlier, M. -F., Laurent, V., Santolini, J., et al. (1997). Actin Depolymerizing Factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol. 136(6), 1307–1322.
McGough, A., Pope, B., Chiu, W., and Weeds, A. (1997). Cofilin changes the twist of F-actin: implications for actin dynamics and cellular function. J Cell Biol. 138(4), 771–781.
Bobokov, A. A., Muhlrad, A., Pavlov, D. A., Kokabi, K., Yilmaz, A., and Reisler, E. (2006). Cooperative effects of cofilin (ADF) on actin structure suggest allosteric mechanism of cofilin function. J Mol Biol. 256(2), 325–334.
Edwards, D. C., Sanders, L. C., Bokoch, G. M., and Gill, G. N. (1999). Activation of LIM kinase by Pak1 couples Rac/Cdc42 GTPase signaling to actin cytoskeletal dynamics. Nature Cell Biol. 1(5), 253–259.
Dan, C., Kelly, A., Bernard, O., and Minden, A. (2001). Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J Biol Chem. 276(34), 32,115–32,121.
Arber, S., Barbayannis, F. A., Hanser, H., et al. (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393(6687), 805–809.
Yang, N., Higuchi, O., Ohashi, K., et al. (1998). Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393(6687), 809–812.
Soosairajah, J., Maiti, S., Wiggan, O., et al. (2005). Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. EMBO J. 24(3), 473–486.
Meng, Y., Zhang, Y., Tregoubov, V., et al. (2002). Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35(1), 121–133.
Bamburg, J. R., and Wiggan, O. P. (2002). ADF/cofilin and actin dynamics in disease. Trends Cell Biol. 12(12), 598–605.
Bellugi, U., Lichtenberger, L., Mills, D., Galaburda, A., and Korenberg, J. R. (1999). Bridging cognition, the brain and molecular genetics: evidence from William’s syndrome. Trends Neurosci. 22, 197–207.
Zhao, L., Ma, Q. L., Calon, F., et al. (2006). Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease. Nat Neurosci. 9(2), 234–242.
Mann, G., (1894). Histochemical changes induced in sympathetic, motor, and sensory nerve cells by functional activity. J Anat Physiol. London 19, 100–108.
Fukui, Y., and Katsumaru, H. (1979). Nuclear actin bundles in Amoeba, Dictyostelium and human HeLa cells induced by dimethyl sulfoxide. Exp Cell Res. 120(2), 451–455.
Iida, K., Iida, H., and Yahara, I. (1986). Heat shock induction of intranuclear actin rods in cultured mammalian cells. Exp Cell Res. 165(1), 207–215.
Nishida, E., Iida, K., Yonezawa, N., Koyasu, S., Yahara, I., and Sakai, H. (1987). Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells. Proc Natl Acad Sci U S A 84(15), 5262–5266.
Ohta, Y., Nishida, E., Sakai, H., and Miyamoto, E. (1989). Dephosphorylation of cofilin accompanies heat shock-induced nuclear accumulation of cofilin. J Biol Chem. 264(27), 16,143–16,148.
Iida, K., Matsumoto, S., and Yahara, I. (1992). The KKRKK sequence is involved in heat shock-induced nuclear translocation of the 18-kDa actin-binding protein, cofilin. Cell Struct Funct. 17(1), 39–46.
Ono, S., Abe, H., Nagaoka, R., and Obinata, T. (1993). Colocalization of ADF and cofilin in intranuclear actin rods of cultured muscle cells. J Muscle Res Cell Motil. 14(2), 195–204.
Moriyama, K., Iida, K., and Yahara, I. (1996). Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells 1(1), 73–86.
Aizawa, H., Fukui, Y., and Yahara, I. (1997). Live dynamics of Dictyostelium cofilin suggests a role in remodeling actin latticework into bundles. J Cell Sci. 110 (Pt 19), 2333–2344.
Sameshima, M., Kishi, Y., Osumi, M., Mahadeo, D., and Cotter, D. A. (2000). Novel actin cytoskeleton: actin tubules. Cell Struct Funct. 25(5), 291–295.
Maloney, M. T., Minamide, L.S., Kinley, A. W., Boyle, J. A., and Bamburg, J. R. (2005). Beta-secretase-cleaved amyloid precursor protein accumulates at actin inclusions induced in neurons by stress or amyloid beta: a feedforward mechanism for Alzheimer’s disease. J Neurosci. 25(49), 11,313–11,321.
Deshpande, A., Mina, E., Glabe, C., and Busciglio, J. (2006). Different conformations of amyloid beta induce neurotoxicity by distinct mechanisms in human cortical neurons. J. Neurosci. 26(22), 6011–6018.
Lacor, P. N., Buniel, M. C., Chang, L., et al. (2004). Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci. 24(45), 10,191–10,200.
Masliah, E. (2000). The role of synaptic proteins in Alzheimer’s disease. Ann N Y Acad Sci. 924, 68–75.
Mucke, L., Masliah, E., Yu, G. Q., et al. (2000). High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20(11), 4050–4058.
Jang, D. H., Han, J. H., Lee, S. H., et al. (2005). Cofilin expression induces cofilin-actin rod formation and disrupts synaptic structure and function in Aplysia synapses. Proc. Natl Acad Sci U S A. 102(44), 16,072–16,077.
Yang, A. J., Knauer, M., Burdick, D.A., and Glabe, C. (1995). Intracellular A beta 1–42 aggregates stimulate the accumulation of stable, insoluble amyloidogenic fragments of the amyloid precursor protein in transfected cells. J Biol Chem. 270(24), 14,786–14,792.
Hartmann, J., Erb, C., Ebert, U., et al. (2004). Central cholinergic functions in human amyloid precursor protein knock-in/presenilin-1 transgenic mice. Neuroscience 125(4), 1009–1017.
Lambert, M. P., Barlow, A. K., Chromy, B. A., et al. (1998). Diffusible, nonfibrillar ligands derived from Abeta 1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A. 95(11), 6448–6453.
Walsh, D. M., Klyubin, I., Fadeeva, J. V., et al. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880), 535–539.
Wang, H. W., Pasternak, J. F., Kuo, H., et al. (2002). Soluble oligomers of beta amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res. 924(2), 133–140.
Lesné, S., Koh, M. T., Kotilinek, L., et al. (2006). A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440(7082), 352–357.
Podlisny, M. B., Ostaszewski, B. L., Squazzo, S. L., et al. (1995). Aggregation of secreted amyloid beta-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J Biol Chem. 270(16), 9564–9570.
Podlisny, M. B., Walsh, D. M., Amarante, P., et al. (1998). Oligomerization of endogenous and synthetic amyloid beta-protein at nanomolar levels in cell culture and stabilization of monomer by Congo red. Biochemistry 37(11), 3602–3611.
Walsh, D. M., Klyubin, I., Shankar, G. M., et al. (2005). The role of cell-derived oligomers of Abeta in Alzheimer’s disease and avenues for therapeutic intervention. Biochem Soc Trans. 33(Pt 5), 1087–1090.
Cleary, J. P., Walsh, D. M., Hofmeister, J. J., et al. (2005). Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci. 8(1), 79–84.
Klyubin, I., Walsh, D. M., Lemere, C. A., et al. (2005). Amyloid beta protein immunotherapy neutralizes Abeta oligomers that disrupt synaptic plasticity in vivo. Nat Med. 11(5), 556–561.
Busciglio, J., Lorenzo, A., and Yankner, B. A. (1992). Methodological variables in the assessment of beta amyloid neurotoxicity. Neurobiol Aging 13(5), 609–612.
Grace, E. A., Rabiner, C. A., and Busciglio, J. (2002). Characterization of neuronal dystrophy induced by fibrillar amyloid beta: implications for Alzheimer’s disease. Neuroscience 114(1), 265–273.
Grace, E. A. and Busciglio, J. (2003). Aberrant activation of focal adhesion proteins mediates fibrillar amyloid beta-induced neuronal dystrophy. J Neurosci. 23(2), 493–502.
Calderwood, D. A., Shattil, S. J., and Ginsberg, M. H. (2000). Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J Biol Chem. 275(30), 22,607–22,610.
Giancotti, F. G. and Ruoslahti, E. (1999). Integrin signaling. Science 285(5430), 1028–1032.
Turner, C. E. (2000). Paxillin and focal adhesion signaling, Nat Cell Biol, 2(12), E231-E236.
Chen, G. C., Turano, B., Ruest, P. J., Hagel, M., Settleman, J., and Thomas, S. M. (2005). Regulation of Rho and Rac signaling to the actin cytoskeleton by paxillin during Drosophila development. Mol Cell Biol. 25(3), 979–987.
Heredia, L., Helguera, P., de Olmos, S., et al. (2006). Phosphorylation of ADF/cofilin by LIM-kinase mediates amyloid β-induced degeneration: A potential mechanism of neuronal dystrophy in Alzheimer’s disease. J Neurosci. 26(24), 6533–6542.
Gong, Y., Chang, L., Viola, K. L., et al. (2003). Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci U S A. 100(18), 10,417–10,422.
Ohno, M., Chang, L., Tseng, W., et al. (2006). Temporal memory deficits in Alzheimer’s mouse models: rescue by genetic deletion of BACE1. Eur J Neurosci 23(1), 251–260.
Wang, Y., Shibasaki, F., and Mizuno, K. (2005). Calcium signal-induced cofilin dephosphorylation is mediated by Slingshot via calcineurin. J Biol Chem. 280(13), 12,683–12,689.
Demuro, A., Mina, E., Kayed, R., Milton, S. C., Parker, I., and Glabe, C. G. (2005). Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem. 280(17), 17,294–17,300.
Roselli, F., Tirard, M., Lu, J., et al. (2005). Soluble beta-amyloid 1–40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. J Neurosci. 25(48), 11,061–11,070.
Xie, C. W. (2004). Calcium-regulated signaling pathways: role in amyloid beta-induced synaptic dysfunction. Neuromolecular Med. 6(1), 53–64.
Cook, C. N., Hejna, M. J., Magnuson, D. J., and Lee, J. M. (2005). Expression of calcipressinl, an inhibitor of the phosphatase calcineurin, is altered with aging and Alzheimer’s disease. J. Alzheimers Dis. 8(1), 63–73.
Stokin, G. B., Lillo, C., Falzone, T. L., et al. (2005). Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307(5713), 1282–1288.
Takahashi, R. H., Almeida, C. G., Kearney, P.F., et al. (2004). Oligomerization of Alzheimer’s beta-amyloid within processes and synapses of cultured neurons and brain. J Neurosci. 24(14), 3592–3599.
Cataldo, A. M., Petanceska, S., Peterhoff, C. M., et al. (2003). App gene dosage modulates endosomal abnormalities of Alzheimer’s disease in a segmental trisomy 16 mouse model of down syndrome. J Neurosci. 23(17), 6788–6792.
Cataldo, A. M., Barnett, J. L., Pieroni, C., and Nixon, R. A. (1997). Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer’s disease: neuropathologic evidence for a mechanism of increased beta-amyloidogenesis. J Neurosci. 17(16), 6142–6151.
Cataldo, A. M., Peterhoff, C. M., Troncoso, J. C., Gomez-Isla, T., Hyman, B. T., and Nixon, R. A. (2000). Endocytic pathway abnormalities precede amyloid-β deposition in sporadic Alzheimer’s disease and Down syndrome. Differential effects of ApoE genotype and presenilin mutations. Am J Pathol. 157(1), 277–286.
Cataldo, A. M., Petanceska, S., Terio, N. B., et al. (2004). Abeta localization in abnormal endosomes: association with earliest Abeta elevations in AD and Down syndrome. Neurobiol Aging 250(10), 1263–1272.
Whitehouse P. J., Struble, R. G., Clark, A. W., and Price, D. L. (1982). Alzheimer disease: plaques, tangles, and the basal forebrain. Ann Neurol. 12(5), 494.
Mann, D. M., Yates, P. O., and Marcyniuk, B. (1984). Alzheimer’s presenile dementia, senile dementia of Alzheimer type and Down’s syndrome in middle age form an age related continuum of pathological changes. Neuropathol Appl Neurobiol. 10(3), 185–207.
Casanova, M. F., Walker, L. C., Whitehouse, P. J., and Price, D. L. (1985) Abnormalities of the nucleus basalis in Down’s syndrome. Ann Neurol. 18(3), 310–313.
Mufson, E. J., Bothwell, M., and Kordower, J. H. (1989). Loss of nerve growth factor receptor-containing neurons in Alzheimer’s disease: a quantitative analysis across subregions of the basal forebrain. Exp Neurol 105(3), 221–232.
Ihamandas, J. H., Cho, C., Jassar, B., Harris, K., MacTavish, D., and Easaw, J. (2001). Cellular mechanisms for amyloid beta-protein activation of rat cholinergic basal forebrain neurons. J Neurophysiol. 86(3), 1312–1320.
Cooper, J. D., Salehi, A., Delcroix, J. D., et al. (2001). Failed retrograde transport of NGF in a mouse model of Down’s syndrome: reversal of cholinergic neurodegenerative phenotypes following NGF infusion. Proc. Natl Acad Sci U S A. 98(18), 10,439–10,444.
Sofroniew, M. V., Howe, C. L., Mobley, W. C. (2001). Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci. 24, 1217–1281.
Hiruma, H., Katakura, T., Takahashi, S., Ichikawa, T., and Kawakami, T. (2003). Glutamate and amyloid beta-protein rapidly inhibit fast axonal transport in cultured rat hippocampal neurons by different mechanisms. J Neurosci. 23(26), 8967–8977.
Arias, C., Becerra-Garcia, F., and Tapia, R. (1998). Glutamic acid and Alzheimer’s disease. Neurobiology (Bp). 6(1), 33–43.
Lancelot, E., and Beal, M. F. (1998). Glutamate toxicity in chronic neurodegenerative disease. Prog Brain Res. 116, 331–347.
Yankner, B. A., Duffy, L. K., and Kirschnur, D. A. (1990). Neurotoxic effect of amyloid beta protein: reversal by tachykinin neuropeptides. Science 250(4978), 279–282.
Kasa, P., Papp, H., Zombori, J., Mayer, P., and Checler, F. (2003). C-terminal fragments of amyloid-beta peptide cause cholinergic axonal degeneration by a toxic effect rather than by physical injury in the nondemented human brain. Neurochem Res. 28(3–4), 493–498.
Salehi, A., Delcroix, J. D., Belichenko, P. V., et al. (2006). Increased APP expression in a mouse model of Down’s syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51, 29–42.
Sun, X., Tong, Y., Qing, H., Chen, C. H., Song, W. (2006). Increased BACE1 maturation contributes to the pathogenesis of Alzheimer’s disease in Down syndrome. FASEB J. 20(9), 1361–1368.
Sun, X., He, G., and Song, W. (2006). BACE2, as a novel APP theta-secretase, is not responsible for the pathogenesis of Alzheimer’s disease in Down syndrome. FASEB J. 20(9), 1369–1376.
Arron, J. R., Winslow, M. M., Polleri, A., et al. (2006). NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 441(7093), 595–600.
Kamal, A., Stokin, G. B., Yang, Z., Xia, C. H., and Goldstein, L. S. (2000). Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28(2), 449–459.
Kamal, A., Almenar-Queralt, A., LeBlanc, J. F., Roberts, E. A., and Goldstein, L. S. (2001). Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 414(6864), 643–648.
Papp, H., Pakaski, M., and Kasa, P. (2002). Presenilin-1 and the amyloid precursor protein are transported bidirectionally in the sciatic nerve of adult rat. Neurochem Int. 41(16), 429–435.
Sheng, J. G., Price, D. L., and Koliatsos, V. E. (2003). The beta-amyloid-related proteins presenilin 1 and BACE1 are axonally transported to nerve terminals in the brain. Exp Neurol. 184(2), 1053–1057.
Inomata, H., Nakamura, Y., Hayakawa, A., et al. (2003). A scaffold protein JIP-1b enhances amyloid precursor protein phosphorylation by JNK and its association with kinesin light chain 1. J Biol Chem. 278(25), 22,946–22,955.
Matsuda, S., Matsuda, Y., and D’Adamio, L. (2003). Amyloid beta protein precursor (AbetaPP), but not AbetaPP-like protein 2, is bridged to the kinesin light chain by the scaffold protein JNK-interacting protein 1. J Biol Chem. 278(40), 38,601–38,606.
Kawarabayashi, T., Shoji, M., Yamaguchi, H., et al. (1993). Amyloid beta protein precursor accumulates in swollen neurites throughout rat brain with aging. Neurosci Lett. 153(1), 73–76.
Roberts, G. W., Gentleman, S. M., Lynch, A., Murray, L., Landon, M., and Craham, D. I. (1994). Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 57(4), 419–425.
Smith, D. H., Chen, X. H., Iwata, A., and Graham, D. I. (2003). Amyloid beta accumulation in axons after traumatic brain injury in humans. J Neurosurg. 98(5), 1072–1077.
Chen, X. H., Siman, R., Iwata, A., Meaney, D. F., Trojanowski, J. Q., and Smith, D. H. (2004). Long-term accumulation of amyloid-beta, beta-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am J Pathol. 165(2), 357–371.
Stokin, G. B. and Goldstein, L. S. (2006). Linking molecular motors to Alzheimer’s disease. J Physiol Paris 99(2–3), 193–200.
Gouras, G. K., Almeida, C.G., and Takahashi, R. H. (2005). Intraneuronal Abeta accumulation and origin of plaques in Alzheimer’s disease. Neurobiol Aging. 26(9), 1235–1244.
Borchelt, D. R., Ratovitski, T., van Lare, J., et al. (1997). Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19(4), 939–945.
Delcroix, J. D., Valletta, J., Wu, C., Hunt, S. J., Kowal, A. S., and Mobley, W. C. (2003). NGF signaling in sensory neurons: evidence that early endosomes cary NGF retrograde signals. Neuron 39, 69–84.
Koo, E. H. and Squazzo, S. L. (1994). Evidence that production and release of amyloid betaprotein involves the endocytic pathway. J Biol Chem. 269(26), 17,386–17,389.
Vetrivel, K. S., Cheng, H., Lin, W., et al. (2004). Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes. J Biol Chem. 279(43), 44,945–44,954.
Prasher, V. P., Farrer, M. J., Kessling, A. M. et al. (1998) Molecular mapping of Alzheimer-type dementia in Down’s syndrome. Ann Neurol. 43(3), 380–383.
Rosso, S., Bollati, F., Bisbal, M., et al. (2004) LIMK1 regulates Golgi dynamics, traffic of Golgi-derived vesicles, and process extension in primary cultured neurons. Mol Biol Cell. 15(7), 3433–3449.
Knebl, J., DeFazio, P., Clearfield, M. B., et al. (1994). Plasma lipids and cholesterol esterification in Alzheimer’s disease. Mech Ageing Dev. 73(1), 69–77.
Frears, E. R., Stephens, D. J., Walters, C. E., Davies, H., and Austen, B. M. (1999). The role of cholesterol in the biosynthesis of beta-amyloid. Neuroreport 10(8), 1699–1705.
Sawamura, N., Morishima-Kawashima, M., Waki, H., et al. (2000). Mutant presenilin 2 transgenic mice. A large increase in the levels of Abeta 42 is presumably associated with the low density membrane domain that contains decreased levels of glycerophospholipids and sphingomyelin. J Biol Chem. 275(36), 27,901–27,908.
Runz, H., Rietdorf, J., Tomic, I., et al. (2002). Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells. J Neurosci. 22(5), 1679–1689.
Burns, M., Gaynor, K., Olm, V., et al. (2003). Presenilin redistribution associated with aberrant cholesterol transport enhances beta-amyloid production in vivo. J Neurosci. 23(13), 5645–5649.
Jin, L. W., Shie, F. S., Maezawa, I., Vincent, I., and Bird, T. (2004). Intracellular accumulation of amyloidogenic fragments of amyloidbeta precursor protein in neurons with Niemann-Pick type C defects is associated with endosomal abnormalities. Am J Pathol. 164(3), 975–985. Erratum in: Am J Pathol. 165(4), 1447.
Cole, S. L., Grudzien, A., Manhart, I. O., Kelly, B. L., Oakley, H., and Vassar, R. (2005). Statins cause intracellular accumulation of amyloid precursor protein, beta-secretase-cleaved fragments, and amyloid beta-peptide via an isoprenoid-dependent mechanism. J Biol Chem. 280(19), 18,755–18,770.
Cole, S. L. and Vassar, R. (2006). Isoprenoids and Alzheimer’s disease: A complex relationship. Neurobiol Dis. 22(2), 209–222.
Simons, M., Keller, P., De Strooper, B., Beyreuther, K., Dotti, C. G., and Simons, K. (1998). Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci U S A 95(11), 6460–6464.
Buxbaum, J. D., Geoghagen, N. S., and Friedhoff, L. T. (2001). Cholesterol depletion with physiological concentrations of a statin decreases the formation of the Alzheimer amyloid Abeta peptide. J Alzheimers Dis. 3(2), 221–229.
Fassbender, K., Simons, M., Bergmann, C., et al. (2001). Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci U S A 98(10), 5856–5861.
Kojro, E., Gimpl, G., Lammich, S., Marz, W., and Fahrenholz, F. (2001). Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha -secretase ADAM 10. Proc Natl Acad Sci U S A. 98(10), 5815–5820.
Abad-Rodriguez, J., Ledesma, M. D., Craessaerts, K., et al. (2004). Neuronal membrane cholesterol loss enhances amyloid peptide generation. J Cell Biol. 167(5), 953–960.
Bodovitz, S. and Klein, W. L. (1996). Cholesterol modulates alpha-secretase cleavage of amyloid precursor protein. J Biol Chem. 271(8), 4436–4440.
Racchi, M., Baetta, R., Salvietti, N., et al. (1997). Secretory processing of amyloid precursor protein is inhibited by increase in cellular cholesterol content. Biochem J. 322 (Pt 3), 893–898.
Galbete, J. L., Martin, T. R., Peressini, E., Modena, P., Bianchi, R., and Forloni, G. (2000). Cholesterol decreases secretion of the secreted form of amyloid precursor protein by interfering with glycosylation in the protein secretory pathway. Biochem J. 348(Pt 2), 307–313.
Riddell, D. R., Christie, G., Hussain, I., and Dingwall, C. (2001). Compartmentalization of beta-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. Curr Biol. 11(16), 1288–1293.
Cordy, J. M., Hussain, I., Dingwall, C., Hooper, N. M., and Turner, A. J. (2003). Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc Natl Acad Sci U S A. 100(20), 11,735–11,740.
Pedrini, S., Carter, T. L., Prendergast, G., Petanceska, S., Ehrlich, M. E., and Gandy, S. (2005). Modulation of statin-activated shedding of Alzheimer APP ectodomain by ROCK. PLoS Med. 2(1), e18, 0069–0078.
Bi, X., Baudry, M., Liu, J., et al. (2004). Inhibition of geranylgeranylation mediates the effects of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors on microglia. J Biol Chem. 279(46), 48,238–48,245.
Kato, T., Hashikabe, H., Iwata, C., Akimoto, K., and Hattori, Y. (2004). Statin blocks Rho/Rho-kinase signalling and disrupts the actin cytoskeleton: relationship to enhancement of LPS-mediated nitric oxide synthesis in vascular smooth muscle cells. Biochim Biophys Acta, 1689(3), 267–272.
Ryder, J., Su, Y., Liu, F., Li, B., Zhou, Y., and Ni, B. (2003). Divergent roles of GSK3 and CDK5 in APP processing. Biochem Biophys Res Commun. 312(4), 922–929.
Vicent, D., Maratos-Flier, E., and Kahn, C. R. (2000). The branch point enzyme of the mevalonate pathway for protein prenylation is over-expressed in the ob/ob mouse and induced by adipogenesis. Mol Cell Biol. 20(6), 2158–2166.
Ridley, A. J. (2001). Rho proteins: linking signaling with membrane trafficking. Traffic 2(5), 303–310.
Beal, M. F. (2005). Mitochondria take center stage in aging and neurodegeneration. Ann Neurol. 58(4), 495–505.
Espisoto, L., Raber, J., Kekonius, L., et al. (2006). Reduction in mitochondrial superoxide dismutase modulates Alzheimer’s disease-like pathology and accelerates the onset of behavioral changes in human amyloid precursor protein transgenic mice. J. Neurosci. 26(19), 5167–5179.
Bernstein, B. W., Chen, H., Boyle, J. A., and Bamburg, J. R. (2006). Formation of Actin-ADF/Cofilin rods transiently retards decline of mitochondrial potential and ATP in stressed neurons. Am. J. Physiol. Cell Physiol. 291, C828-C839.
Bowen, D. M., White, P., Spillane, J. A., et al. (1979). Accelerated ageing or selective neuronal loss as an important cause of dementia? Lancet 1(8106), 11–14.
Hirai, K., Aliev, G., Nunomura, A., et al. (2001). Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci. 21(9), 3017–3023.
Swerdlow, R. H. and Kish, S. J. (2002). Mitochondria in Alzheimer’s disease. Int Rev Neurobiol. 53, 341–385.
Lovell, M. A., Xiong, S., Markesbery, W. R., and Lynn, B. C. (2005). Quantitative proteomic analysis of mitochondria from primary neuron cultures treated with amyloid beta peptide. Neurochem Res. 30(1), 113–122.
Kondo, T., Shirasawa, T., Itoyama, Y., and Mori, H. (1996). Embryonic genes expressed in Alzheimer’s disease brains. Neurosci Lett. 209(3), 157–160.
Banerjee, J. and Ghosh, S. (2006). Phosphorylation of rat brain mitochondrial voltage-dependent anion as a potential tool to control leakage of cytochrome c. J Neurochem., Jun 19; 98, 670–676.
Chua, B. T., Volbracht, C., Tan, K. O., Li, R., Yu, V. C., and Li, P. (2003). Mitochondrial translocation of cofilin is an early step in apoptosis induction. Nat Cell Biol. 5(12), 1083–1089.
Yang, E., Kim, H., Lee, J., et al. (2004). Overexpression of LIM kinase 1 renders resistance to apoptosis in PC12 cells by inhibition of caspase activation. Cell Mol Neurobiol. 24(2), 181–192.
Gourlay C. W. and Ayscough, K. R., (2005). The actin cytoskeleton in ageing and apoptosis. FEMS Yeast Res 5(12), 1193–1198.
Gourlay, C. W., Carpp, L. N., Timpson, P., Winder, S. J., and Ayschough, K. R. (2004). A role for the actin cytoskeleton in cell death and aging in yeast. J Cell Biol. 164(6), 803–809.
Gourlay, C. W. and Ayscough, K. R. (2005). A role for actin in aging and apoptosis. Biochem Soc Trans. 33(6), 1260–1264.
Gourlay, C. W. and Ayschogh, K. R. (2005). Identification of an upstream regulatory path way controlling actin-mediated apoptosis in yeast. J Cell Sci. 118(10), 2119–2132.
Tsujimoto, Y. and Shimizu, S. (2002). The voltage-dependent anion channel: an essential player in apoptosis. Biochimie 84, 187–193.
Zalk, R., Israelson, A., Garty, E. S., Azoulay-Zohar, H., and Shoshan-Barmatz, V. (2005). Oligomeric states of the voltage-dependent anion channel and cytochrome c release from mitochondria. Biochem J. 386(Pt. 1), 73–83.
Koya, R. C., Fujita, H., Shimizu, S., et al. (2000). Gelsolin inhibits apoptosis by blocking mitochondrial membrane potential loss and cytochrome c release. J Biol Chem. 275(20), 15,343–15,349.
Kusano, H., Shimizu, S., Koya, R. C., et al. (2000). Human gelsolin provents apoptosis by inhibiting apoptotic mitochondrial changes via closing VDAC. Oncogene 19(42), 4807–4814
Author information
Authors and Affiliations
Corresponding author
Additional information
An erratum to this article is available at http://dx.doi.org/10.1007/s12035-007-8011-y.
Rights and permissions
About this article
Cite this article
Maloney, M.T., Bamburg, J.R. Cofilin-mediated neurodegeneration in alzheimer’s disease and other amyloidopathies. Mol Neurobiol 35, 21–43 (2007). https://doi.org/10.1007/BF02700622
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02700622