Summary
A statistical analysis of extensive DNA sequence data from primates, rodents, and artiodacytls clearly indicates that no global molecular clock exists in mammals. Rates of nucleotide subsitution in rodents are estimated to be four to eight times higher than those in higher primates and two to four times higher than those in artiodactyls. There is strong evidence for lower substitution rates in apes and humans than in monkeys, supporting the hominoid slowdown hypothesis. There is also evidence for lower rates in humans than in apes, suggesting a further rate slowdown in the human lineage after the separation of humans from apes. By contrast, substitution rates are nearly equal in mouse and rat. These results suggest that differences in generation time or, more precisely, in the number of germline DNA replications per year are the primary cause of rate differences in mammals. Further, these differences are more in line with the neutral mutation hypothesis than if the rates are the same for short-and long-living mammals.
Similar content being viewed by others
References
Andrews P (1985) Improved timing of hominoid evolution with a DNA clock. Nature 314:498–499
Baralle FE, Shoulders CC, Proudfoot NJ (1980) The primary structure of the human ∈-globin gene. Cell 21:621–626
Belin D, Vassalli J-D, Combepine C, Godeau F, Nagamine Y, Reich E, Kocher HP, Duroisin RM (1985) Cloning, nucleotide sequencing and expression of cDNAs encoding mouse urokinase-type plasminogen activator. Eur J Biochem 148: 225–232
Benfield PA, Zivin RA, Miller LS, Sowder R, Smythers GW, Henderson L, Oroszlan S, Pearson ML (1984) Isolation and sequence analysis of cDNA clones coding for rat skeletal muscle creatine kinase. J Biol Chem 259:14979–14984
Bonner TI, Heinemann R, Todaro GJ (1980) Evolution of DNA sequences has been retarded in Malagasy primates. Nature 286:420–423
Britten RJ (1986) Rates of DNA sequence evolution differ between taxonomic groups. Science 231:1393–1398
Brunner AM, Schimenti JC, Duncan CH (1986) Dual evolutionary modes in the bovine globin locus. Biochemistry 25: 5028–5035
Buskin JN, Jaynes JB, Chamberlain JS, Hauschka SD (1985) The mouse muscle creatine kinase cDNA and deduced amino acid sequences: comparison to evolutionarily related enzymes. J Mol Evol 22:334–341
Cohen DR, Hapel AJ, Young IG (1986) Cloning and expression of the rat interleukin-3 gene. Nucleic Acids Res 14:3641–3657
Cleary ML, Schon EA, Lingrel JB (1981) Two related pseudogenes are the result of a gene duplication in the goat β-globin locus. Cell 26:181–190
Clemens WA (1974)Purgatorius, an early paromomyid primate (Mammalia). Science 184:903–905
Crawford RJ, Tregear GW, Niall HD (1986) The nucleotide sequences of baboon chorionic gonadotropin β-subunit have diverged from the human. Gene 46:161–169
Dayhoff MO (1972) Atlas of protein sequence and structure, vol 5. National Biomedical Research Foundation, Silver Spring MD
Deschenes RJ, Haun RS, Funckes CL, Dixon JE (1985) A gene encoding rat cholecystokinin. Isolation, nucleotide sequence, and promoter activity. J Biol Chem 260:1280–1286
Dull TJ, Gray A, Hayflick JS, Ullrich A (1984) Insulin-like growth factor II precursor gene organization in relation to insulin gene family. Nature 310:777–781
Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. A method based on mutation distances as estimated from cytochrome c sequences is of general applicability. Science 155:279–284
Fleagle JG, Bown TM, Obradovich JD, Simons EL (1986) Age of the earliest African anthropoids. Science 234:1247–1249
Ganesan A, Spivak G, Hanawalt P (1983) Expression of DNA repair genes in mammalian cells. In: Nagley P, Linnane AW, Peacock JA, Pateman JA (eds) Manipulation and expression of genes. Academic Press, Sydney, Australia, p 45
GenBank (1986) Bolt Beranek and Newman Inc, Cambridge MA
Gentry AW (1978) Bovidae. In: Maglio VJ, Cooke HBS (eds) Evolution of African mammals. Harvard University Press, Cambridge MA, p 540
Giebel LB, van Santen VL, Slightom JL, Spritz RA (1985) Nucleotide sequence, evolution, and expression of the fetal globin gene of the spider monkeyAteles geoffroyi. Proc Natl Acad Sci USA 82:6985–6989
Gingerich PD (1984) Primate evolution: evidence from the fossil record, comparative morphology, and molecular biology. Yearb Phys Anthropol 27:57–72
Goodman M (1961) The role of immunochemical differences in the phyletic development of human behavior. Human Biol 33:131–162
Goodman M, Barnabas J, Matsuda G, Moore GW (1971) Molecular evolution in the descent of man. Nature 233:604–613
Graur D (1985) Amino acid composition and the evolutionary rates of protein-coding genes. J Mol Evol 22:53–63
Hansen JN, Konkel DA, Leder D (1982) The sequence of a mouse embryonic β-globin gene: evolution of the gene and its signal region. J Biol Chem 257:1048–1052
Harris S, Thackeray JR, Jeffreys AJ, Weiss ML (1986) Nucleotide sequence analysis of the lemur β-globin gene family: evidence for major rate fluctuations in globin polypeptide evolution. Mol Biol Evol 3:465–484
Hayashizaki Y, Miyai K, Kato K, Matsubara K (1985) Molecular cloning of the human thyrotropin-β subunit gene. FEBS Lett 188:394–400
Hill A, Hardies SC, Phillips SJ, Davis MG, Hutchison III CA, Edgell MH (1984a) Two mouse early embryonic β-globin gene sequences. J Biol Chem 259:3739–3747
Hill RE, Shaw PH, Boyd PA, Baumann H, Hastie ND (1984b) Plasma protease inhibitors in mouse and man: divergence within the reactive centre regions. Nature 311:175–177
Hogg D, Tsui L-C, Gorin M, Breitman ML (1986) Characterization of the human β-crystallin gene HuβA3/A1 reveals ancestral relationships among the βγ-crystallin superfamily. J Biol Chem 261:12420–12427
Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34
jacobs LL, Pilbeam D (1980) Of mice and men: fossil-based divergence dates and molecular “clocks”. J Hum Evol 9:551–555
Kawakami K, Nojima H, Ohta T, Nagano K (1986) Molecular cloning and sequence analysis of human Na, K-ATPase β-subunit. Nucleic Acids Res 14:2833–2844
Kielan-Jaworowska Z, Bown TM, Lillegraven JA (1979) Eutheria. In: Lillegraven JA, Kielan-Jaworowska Z, Clemens WA (eds) Mesozoic mammals. University of California Press, Berkeley, p 221
Kimura M (1968) Evolutionary rate at the molecualr level. Nature 217:624–626
Kimura M (1969) The rate of molecular evolution considered from the standpoint of population genetics. Proc Natl Acad Sci USA 63:1181–1188
Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120
Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge, England
Kohne DE (1970) Evolution of higher-organism DNA. Q Rev Biophys 33:327–375
Kohne DE, Chiscon JA, Hoyer BH (1972) Evolution of primate DNA sequences. J Hum Evol 1:627–644
Konkel DA, Maizel JV Jr, Leder P (1979) The evolution and sequence comparison of two recently diverged mouse chromosomal β-globin genes. Cell 18:865–873
Koop BF, Goodman M, Xu P, Chan K, Slightom JL (1986a) Primate η-globin DNA sequences and man's place among the great apes. Nature 319:234–238
Koop BF, Miyamoto MM, Embury JE, Goodman M, Czelusniak J, Slightom SL (1986b) Nucleotide sequence and evolution of the orangutan ∈ globin gene region and surrounding Alu repeats. J Mol Evol 24:94–102
Laird CD, McConaughy BL, McCarthy BJ (1969) Rate of fixation of nucleotide substitutions in evolution. Nature 224: 149–154
Lawn RM, Efstratiadis A, O'Connell C, Maniatis T (1980) The nucleotide sequence of the human β-globin gene. Cell 21:647–651
Li W-H, Tanimura M (1987) The molecular clock runs more slowly in man than in apes and monkeys. Nature 326:93–96
Li W-H, Wu C-I (1987) Rates of nucleotide substitution are evidently higher in rodents than in man. Mol Evol Biol 4:74–77
Li W-H, Luo CC, Wu CI (1985a) Evolution of DNA sequences. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum, New York, p 1
Li W-H, Wu CI, Luo CC (1985b) A new method for estimating synonymous and nonsynonymous rates in nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2:150–174
Liebhaber SA, Begley KA (1983) Structural and evolutionary analysis of the two chimpanzee α-globin mRNAs. Nucleic Acids Res 11:8915–8929
Liebhaber SA, Goossens M, Kan YW (1981) Homology and concerted evolution at the α1 and α2 loci of human α-globin. Nature 290:26–29
MacFadden BF, Campbell KE Jr, Cifelli RL, Siles O, Johnson NM, Naeser CW, Zeitler PK (1985) Magnetic polarity stratigraphy and mammalian fauna of the Deseadan (Late Oligocene-Early Miocene) Salla beds of northern Bolivia. J Geol 93:223–250
Marks J, Shaw J-P, Shen C-KJ (1986) The orangutan adult α-globin gene locus: duplicated functional genes and a newly detected member of the primate α-globin gene family. Proc Natl Acad Sci USA 83:1413–1417
Mercer RW, Schneider JW, Savitz A, Emanuel J, Benz EJ Jr, Levenson R (1986) Rat-brain Na, K-ATPase β-chain gene: primary structure, tissue-specific expression, and amplification in quabain-resistant HeLa C+ cells. Mol Cell Biol 6:3884–3890
Miyata T, Yasunaga T (1980) Molecular evolution of mRNA: a method for estimating evolutionary rates of synonymous and amino acid substitution from homologous nucleotide sequences and its application. J Mol Evol 16:23–36
Miyata T, Yasunaga T, Nishida T (1980) Nucleotide sequence divergence and functional constraint in mRNA evolution. Proc Natl Acad Sci USA 77:7328–7332
Miyata T, Hayashida H, Kikuno R, Hasegawa M, Kobayashi M, Koike K (1982) Molecular clock of silent substitution: at least six-fold preponderance of silent changes in mitochondrial genes over those in nuclear genes. J Mol Evol 19:28–35
Mocchetti I, Einstein R, Brosius J (1986) Puttative diazepam binding inhibitor peptide: cDNA clones from rat. Proc Natl Acad Sci USA 83:7221–7225
Mukai T, Joh K, Arai Y, Yatsuki H, Hori K (1986) Tissuespecific expression of rat aldolase A mRNAs. J Biol Chem 261:3347–3354
Nei M (1975) Molecular population genetics and evolution. North-Holland. Amsterdam
Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426
Ohta T (1973) Slightly deleterious mutant substitutions in evolution. Nature 246:96–98
Ohta T (1974) Mutational pressure as the main cause of molecular evolution and polymorphism. Nature 252:351–354
Ovchinnikov YA, Modyanov NN, Broude NE, Petrukhin KE, Grishin AV, Arzamazova NM, Aldanova NA, Monastyrskaya GS, Sverdlov ED (1986) Pig kidney Na+, K+-ATPase: primary structure and spatial organization. FEBS Lett 201: 237–245
Paolella G, Buono P, Mancini FP, Izzo P, Salvatore F (1986) Structure and expression of mouse aldolase genes: brain-specific aldolase C amino acid sequence is closely related to aldolase A. Aur J Biochem 156:229–235
Pilbeam D (1984) The descent of hominoids and hominids. Sci Am 252:84–96
Pilbeam D (1986) Hominoid evolution and hominoid origins. Am Anthropol 88:295–312
Polites HG, Melchior GW, Castle CK, Marotti KR (1986) The primary structure of cynomolgus monkey apolipoprotein A-1 deduced from the cDNA sequence. Gene 49:103–110
Raschke WC (1987) Cloned murine T200 (Ly-5) cDNA reveals multiple transcripts within β-and T-lymphocyte lineages. Proc Natl Acad Sci USA 84:161–165
Reeves R, Spies AG, Nissen MS, Buck CD, Weinberg AD, Barr PJ, Magnuson NS, Magnuson JA (1986) Molecular cloning of a functional bovine interleukin 2 cDNA. Proc Natl Acad Sci USA 83:3228–3232
Riccio A, Grimaldi G, Verde P, Sebastio G, Boast S, Blasi F (1985) The human urokinase-plasminogen activator gene and its promoter. Nucleic Acids Res 13:2759–2771
Romer AS (1966) Vertebrate paleontology. University of Chicago Press, Chicago
Rosenberger AL (1984) Fossil New World monkeys dispute the molecular clock. J Hum Evol 13:737–742
Rottmann WH, Tolan DR, Penhoet EE (1984) Complete amino acid sequence for human aldolase B derived from cDNA and genomic clones. Proc Natl Acad Sci USA 81:2738–2742
Sakakihara M, Mukai T, Hori K (1985) Nucleotide sequence of a cDNA clone for human aldolase: a messenger RNA in the liver. Biochem Biophys Res Commun 131:413–420
Sakoyama Y, Hong K-J, Byun SM, Hisajima H, Ueda S, Yaoita Y, Hayashida H, Miyata T, Honjo T (1987) Nucleotide sequences of immunoglobulin ∈ genes of chimpanzee and orangutan: DNA molecular clock and hominoid evolution. Proc Natl Acad Sci USA 84:1080–1084
Sarich VM, Wilson AC (1967) Immunological time scale for hominid evolution. Science 158:1200–1203
Schimenti JC, Duncan CH (1984) Ruminant globin gene structures suggest an evolutionary role for Alu-type repeats. Nucleic Acids Res 12:1641–1655
Schimenti JC, Duncan CH (1985) Concerted evolution of the cow ∈2 and ∈4 β-globin genes. Mol Biol Evol 2:505–513
Schon EA, Cleary ML, Haynes JR, Lingrel JB (1981) Structure and evolution of goat γ-, βC- and βA-globin genes: three developmentally regulated genes contain inserted elements. Cell 27:359–369
Scott AF, Heath P, Trusko S, Boyer SH, Prass W, Goodman M, Czelusniak J, Chang L-YE, Slightom JL (1984) The sequence of the gorilla fetal globin genes: evidence for multiple gene conversions in human evolution. Mol Biol Evol 1:371–389
Seidman CE, Bloch KD, Klein KA, Smith JA, Seidman JG (1984) Nucleotide sequences of the human and mouse atrial natriuretic factor genes. Science 226:1206–1209
Sharp PM, Li W-H (1986) An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol 24:28–38
Shibahara S, Kubo T, Perski HJ, Takahata H, Noda M, Numa S (1985) Cloning and sequence analysis of human genomic DNA encoding γ subunit precursor of muscle acetylcholine receptor. Eur J Biochem 146:15–22
Shull GE, Lane LK, Lingrel JB (1986) Amino-acid sequence of the β-subunit of the (Na++K+) ATPase deduced from a cDNA. Nature 321:429–431
Sibley CG, Ahlquist JE (1984) The phylogeny of the hominoid primates, as indicated by DNA-DNA hybridization. J Mol Evol 20:2–15
Slightom JL, Blechl AE, Smithies O (1980) Human fetalGγ- andAγ-globin genes: complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell 21:627–638
Slightom JL, Chang L-YE, Koop BF, Goodman M (1985) Chimpanzee fetalGγ- andAγ-globin globin nucleotide sequences provide further evidence of gene conversions in hominine evolution. Mol Biol Evol 2:370–389
Slightom JL, Theisen TW, Koop BF, Goodman M (1987) Orangutan fetal globin genes: nucleotide sequences reveal multiple gene conversions during hominid phylogeny. J Biol Chem 262:7472–7483
Stempien MM, Fong NM, Rall LB, Bell GI (1986) Sequence of a placental cDNA encoding the mouse insulin-like growth factor II precursor. DNA (NY) 5:357–361
Sturtevant AH (1965) A history of genetics. Harper and Row, New York
Takahashi Y, Kato K, Hayashizaki Y, Wakabayashi T, Ohtsuka E, Matsuki S, Ikehara M, Matsubara K (1985) Molecular cloning of the human cholecystokinin gene by use of a synthetic probe containing deoxyinosine. Proc Natl Acad Sci USA 82:1931–1935
Takai T, Noda M, Furutani Y, Takahashi H, Notake M, Shimizu S, Kayano T, Tanabe T, Tanaka K, Hirose T, Inayama S, Numa S (1984) Primary structure of γ subunit precursor of calf-muscle acetylcholine receptor deduced from the cDNA sequence. Eur J Biochem 143:109–115
Tice RR, Setlow RB (1985) DNA repair and replication in aging organisms and cells. In: Finch CE, Snyder EL (eds), Handbook of the biology of aging. Van Nostrand and Reinhold, New York, p 173
Tsutsumi K, Mukai T, Tsutsumi R, Hidaka S, Arai Y, Hori K, Ishikawa K (1985) Structure and genomic organization of the rat aldolase B gene. J Mol Biol 181:153–160
Ulasuk GP, Miller J, Bencen GH, Lewicki JA (1986) Structure and analysis of the bovine atrial natriuretic peptide precursor gene. Biochem Biophys Res Commun 136:396–403
Van Valen L (1974) Cited in: Langley CH, Fitch WM. An examination of the constancy of the rate of molecular evolution. J Mol Evol 3:161–177
Van Valen L, Sloan RE (1965) The earliest primates. Science 150:743–745
Vogel F, Kopun M, Rathenberg R (1976) Mutation and molecular evolution. In: Goodman M, Tashian RE (eds) Molecular anthropology. Plenum, New York, p 13
Webb NR, Rose TM, Malik N, Marquardt H, Shoyab M, Todaro GJ, Lee DC (1987) Bovine and human cDNA sequences encoding a putative benzoidiazepine receptor ligand. DNA (NY) 6:71–79
Willard C, Wong E, Hess JF, Shen C-KJ, Chapman B, Wilson AC, Schmid CW (1985) Comparison of human and chimpanzee ξ1 globin genes. J Mol Evol 22:309–315
Williams SC, Bruckheimer SM, Lusis AJ, LeBoeuf RC, Kinniburgh AJ (1986) Mouse apolipoprotein A-IV gene: nucleotide sequence and induction by a high-lipid diet. Mol Cell Biol 6:3807–3814
Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639
Wu C-I, Li W-H (1985) Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci USA 82:1741–1745
Young JZ (1981) The life of vertebrates, ed 3. Clarendon Press, Oxford, England
Yu L, LaPolla RJ, Davidson N (1986) Mouse muscle nicotinic acetylcholine receptor γ subunit: cDNA sequence and gene expression. Nucleic Acids Res 14:3539–3555
Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds), Evolving genes and proteins. Academic Press, New York, p 97
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Li, WH., Tanimura, M. & Sharp, P.M. An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J Mol Evol 25, 330–342 (1987). https://doi.org/10.1007/BF02603118
Issue Date:
DOI: https://doi.org/10.1007/BF02603118