Summary
The monoclonal antibody 5-D-4 recognizes heavily sulphated forms of keratan sulphate epitope. It reacted strongly with the cell surfaces of most thyroid papillary carcinomas from all the individuals examined, independently of the blood group of the patients. Cells of follicular variants of papillary carcinomas were also labelled by 5-D-4. In contrast, no labelling with this antibody was observed in other types of thyroid neoplasms, or in normal tissues. The reactivity of 5-D-4 with papillary carcinomas was markedly reduced or abolished by prior digestion with endo-β-galactosidase keratanase II, or N-glycosidase F. Although keratanase digestion had no effect on 5-D-4 labelling, it revealed the binding sites ofGriffonia simplicifolia agglutinin II (GSA-II), which recognizes terminalN-acetylglucosamine in a limited number of carcinoma cells from some individuals. Blood group ABH antigens, which are simultaneously expressed together with keratan sulphate epitope in cancer cells, were eliminated by digestion with endo-β-galactosidase and N-glycosidase F, but were resistant to keratanase and keratanase II treatment. These results indicate that keratan sulphate oligosaccharides are cancer-associated and are probably oncofoetal antigens, as are the blood group antigens in human thyroid glands. The results suggests that poly-N-acetyllactosamine, which is ubiquitously and consistently produced in papillary carcinomas, is modified in two different ways: sulphation on the 6-position of at least some units of either galactose, orN-acetylglucosamine or both, and decoration of non-reducing termini with the blood group antigens. Along with the endo-β-galactosidase-GSA-II labelling procedure, labelling with 5-D-4 may be a useful diagnostic means for distinguishing papillary carcinoma from other types of thyroid neoplasms.
Similar content being viewed by others
References
Asari, A., Miyauchi, S., Miyazaki, K., Hamai, A., Horie, K., Takahashi, T., Sekiguchi, T., Machida, A., Kohno, K. &Uchiyama, Y. (1992) Intra- and extracellular localization of hyaluronic acid and proteoglycan constituents (chondroitin sulfate, keratan sulfate, and protein core) in articular cartilage of rabbit tibia.J Histochem. Cytochem. 40, 1693–703.
Bertolotto, A., Caterson, B., Canavese, G., Migheli, A. &Schifer, D. (1993) Monoclonal antibodies to keratan sulfate immunolocalize ramified microglia in paraffin and cryostat sections of rat brain.J. Histochem. Cytochem. 41, 481–7.
Blochberger, T., Vergnes, J.-P., Hempel, J. &Hassell, J. R. (1992) cDNA to chick lumican (corneal keratan sulfate proteoglycan) reveals homology to the small intestinal proteoglycan gene family and expresion in muscle and intestine.J. Biol. Chem. 267, 347–52.
Bouhours, D., Larson, G., Bouhours, J. F., Lundblad, A. &Hansson, G. C. (1987) Developmental changes of blood group A-active glycosphingolipids with type 1 and type 2 chains in rat small intestine.Glycoconjugate J. 4, 59–71.
Carson, D. D., Tang, J.-P., Julian, J. &Glasser, S. R. (1988) Vectorial secretion of proteoglycans by polarized rat uterine epithelial cells.J. Cell Biol. 107, 2425–35.
Chakravarti, S., Stallings, R. L., Sundarraj, N., Cornuet, P. K. &Hassell, J. R. (1995) Primary structure of human lumican (keratan sulfate proteoglycan) and localization of the gene (LUM) to chromasome 12q21.3-q22.Genomics 27, 481–8.
Cole, G. J. &Mccabe, C. F. (1991) Identification of a developmentally regulated keratan sulfate proteoglycan that inhibits cell adhesion and neurite outgrowth.Neuron 7, 1007–18.
Croucher, S. J. &Tickle, C. (1989) Characterization of epithelial domains in the nasal passages of chick embryos: spacial and temporal mapping of a range of extracellular matrix and cell surface molecules during development of the nasal placode.Development 106, 493–509.
Cummings, R. D. &Smith, D. F. (1992) The selectin family of carbohydrate-binding proteins: structure and importance of carbohydrate ligands for cell adhesion.BioEssays 14, 849–56.
Davies, J. R., Gallagher, J. T., Richardson, P. S. &Sheehan, J. K. (1991) Mucins in cat airway secretions.Biochem. J. 275, 663–9.
Ebisu, S., Iyer, P. N. S. &Goldstein, I. J. (1978) Equilibrium dialysis and carbohydrate-binding studies on the 2-acetamido-2-deoxy-D-glycopyranosyl-binding lectins fromBandeiraea simplicifolin seeds.Carbohydr. Res.,61, 129–38.
Feizi, T. (1981) The blood group Ii system: a carbohydrate antigen system defined by naturally monoclonal or oligoclonal autoantibodies of man.Immunol. Commun. 10, 127–56.
Feizi, T. (1992) Blood group-related oligosaccharides are ligands in cell-adhesion events.Biochem. Soc. Trans. 20, 274–8.
Feizi, T. &Childs, R. A. (1987) Carbohydrates as antigenic determinants of glycoproteins.Biochem. J. 245, 1–11.
Friedman, M. J., Fukuda, M. &Laine, R. A. (1985) Evidence for a malarial parasite interaction site on the major transmembrane protein of the human erythrocyte.Science 228, 75–7.
Fukuda, M. (1985a) Cell surface glycoconjugates as oncodifferentiation markers in hematopoietic cells.Biochim. Biophys. Acta 780, 119–50.
Fukuda, M. N. (1985b) Isolation and characterization of a new endo-β-galactosidase fromDiplococcus pneumoniae.Biochemistry 24, 2154–63.
Fukuda, M. (1994) Cell surface carbohydrate: cell-type specific expression. InMolecular glycobiology (edited byFukuda, M. &Hindsgaul, O.) pp. 1–43. Oxford: IRL Press.
Funderburgh, J. L., Caterson, B. &Conrad, G. W. (1987) Distribution of proteoglycans antigenically related to corneal keratan sulfate proteoglycan.J. Biol. Chem. 262, 11634–40.
Funderburgh, J. L., Funderburgh, M. L., Mann, M. M. &Conrad, G. W. (1991) Unique glycosylation of three keratan sulfate proteoglycan isoforms.J. Biol. Chem. 266, 14226–31.
Hanisch, F.-G., Uhlenbruck, G., Peter-Katalinic, J., Egge, H., Dabrowski, J. &Dabrowski, U. (1989) Structures of neutral O-linked polylactosaminoglycans on human skim milk mucins.J. Biol. Chem. 264, 872–83.
Hascall, V. C. &Hascall, G. K. (1981) Proteoglycans. InCell biology of the extracellular matrix (edited byHay, E. D.) pp. 39–63. New York: Plenum Press.
Hashimoto, N., Morikawa, K., Kikuchi, H., Yoshida, K. &Tokuyasu, K. (1988) Purification and properties of new keratan sulfate degradating enzyme.Seikagaku 60, 935.
Heath, L. &Thorogood, P. (1989) Keratan sulfate expression during avian craniofacial morphogenesis.Roux's Arch. Dev. Biol. 198, 103–13.
Hindsgaul, O., Morberg, T., Le Pendu, J. &Lemieux, R. U. (1982) Synthesis of type-2 human blood-group antigenic determinants. The H, X, and Y haptens and variations of the H type 2 determinant as probes for the combining site of the lectin I ofUlex europaeus.Carbohydr. Res. 109, 109–42.
Hoadley, M. E., Seif, M. W. &Aplin, A. (1990) Menstrual-cycle dependent expression of keratan sulphate in human endometrium.Biochem. J. 266, 757–63.
Hounsell, E. F., Feeney, J., Scudder, P., Tang, P. W. &Feizi, T. (1986) H-NMR studies at 500 MHz of a neutral dissaccharide and sulphated di, tetra-, hexa- and larger oligosaccharides obtained by endo-β-galactosidase treatment of keratan sulphate.Eur. J. Biochem. 157, 375–84.
Ito, M., Hirabayashi, Y. &Yamagata, T. (1986) Substrate specificity of endo-β-galactosidases fromFlavobacterium keratolyticus andEscherichia freundii is different from that ofPseudomonas sp.J. Biochem. 100, 773–80.
Ito, M., Nishi, K., Nakajima, M., Matsuda, Y., Ishitani, A., Mizumoto, J. &Hirota, T. (1986) Localization of blood group antigens in human pancreas with lectin-horseradish peroxidase conjugates.Acta Histochem. Cytochem. 19, 205–218.
Ito, N., Nishi, K., Nakajima, M., Okamura, Y. &Hirota, T. (1990) Histochemical localization and analysis of blood group-related antigens in human pancreas using immunostaining with monoclonal antibodies and exoglycosidase digestion.J. Histochem. Cytochem. 38, 1331–40.
Ito, N., Tabata, S., Kawahara, S., Hirano, H., Nakajima, M., Uchida, K. &Hirota, T. (1993) Histochemical analysis of blood group antigens in human sublingual glands and pancreas. An application of high-performance liquid chromatography to estimate the quantity of galactose liberated from tissue sections by α-galactosidase digestion.Histochem. J. 25, 242–9.
Ito, N., Kawahara, S., Hirano, Y., Morimura, Y., Nakajima, K., Uchida, K. &Hirota, T. (1994a) Localization of blood-group-related linear poly-N-acetyllactosamine structure in different human tissues byGriffonia simplicifolia agglutinin-II staining following endo-β-galactosidase digestion.Histochem. J. 26, 327–36.
Ito, N., Yokota, M., Kawahara, S., Morimura, Y., Hirano, Y., Nagaike, C., Uchida, K., Hirota, T. &Matsunaga, T. (1994b) Histochemical demonstration of endo-β-galactosidase susceptible poly-N-acetyllactosamine with the blood group specificities in papillary carcinomas of the human thyroid glands.Acta Histochem. Cytochem. 27, 451–8.
Ito N., Yokota, M., Kawahara, S., Nagaike, C., Morimura, Y., Hirota, T. &Matsunaga, T. (1995) Histochemical demonstration of different types of poly-N-acetyllactosamine structures in human thyroid neoplasms by using lectins and endo-β-galactosidase digestion.Histochem. J.,27, 620–9.
Ito, N., Yokota, M., Nagaike, C., Morimura, Y., Hatake, K. &Matsunaga, T. (1996) Histochemical demonstration and analysis of poly-N-acetyllactosamine structures in normal and malignant human tissues.Histol. Histopathol. 11, 203–14.
Kapoor, R. &Prehm, P. (1983) Changes in proteoglycan composition of F9 teratocarcinoma cells upon differentiation.Eur. J. Biochem. 137, 589–95.
Kinloch, R. A., Mortillo, S., Stewart, C. L. &Wassarman, P. M. (1991) Embryonal carcinoma cells transfected with ZP3 genes differentially glycosylate similar polypeptides and secrete active mouse sperm receptor.J. Cell Biol. 115, 655–64.
Lee, N., Wang, W.-C. &Fukuda, M. (1990) Granulocytic differentiation of HL-60 cells is associated with increase of poly-N-acetyllactosamine in Asp-linked oligosaccharides attached to human lysosomal membrane glycoproteins.J. Biol. Chem. 265, 20476–87.
Loomes, L. M., Uemura, K., Childs, R. A., Paulson, J. C., Rogers, G. N., Scudder, P. R., Michalski, J.-C., Hounsell, E. F., Taylor-Robinson, D. &Feizi, T. (1984) Erythrocyte receptors forMycoplasma pneumoniae are sialylated oligosaccharides of Ii antigen type.Nature 307, 560–3.
Loveless, R. W., Griffiths, S., Fryer, P. R., Blauth, C. &Feizi, T. (1992) Immunoelectron microscopic studies reveal differences in distribution of sialo-oligosaccharide receptors forMycoplasma pneumoniae on the epithelium of human and hamster bronchi.Infect. Immunol. 60, 4015–23.
Maemura, K. &Fukuda, M. (1992) Poly-N-acetyllactosaminyl O-glycans attached to leukosialin.J. Biol. Chem. 267, 24379–86.
Mehmet, H., Scudder, P., Tang, P. W., Hounsell, E. F., Caterson, B. &Feizi, T. (1986) The antigenic determinants recognized by three monoclonal antibodies to keratan sulphate involve sulphated hepta- or larger oligosaccharides of the poly(N-acetyllactosamine) series.Eur. J. Biochem. 157, 385–91.
Melrose, J. &Ghosh, O. (1988) The quantitative discrimination of corneal type I, but not skeletal type II, keratan sulfate in glycosaminoglycan mixtures by using a combination of dimethylmethylene blue and endo-β-d-galactosidase digestion.Anal. Biochem. 170, 293–300.
Merkle, R. K. &Cummings, R. D. (1987) Relationship of the terminal sequences to the length of poly-N-acetyllactosamine chains in asparagine-linked oligosaccharides from the mouse lymphoma cell line BW5147. Immobilized tomato lectin interacts with high affinity with glycopeptides containing long poly-N-acetyllactosamine chains.J. Biol. Chem. 262, 8179–89.
Moore, K. L., Eaton, S. F., Lyons, D. E., Lichenstein, H. S., Cummings, R. D. &Mcever, R. P. (1994) The P-selectin glycoprotein ligand from human neutrophils, displays sialylated, fucosylated, O-linked poly-N-acetyllactosamine.J. Biol. Chem. 269, 23318–27.
Nakazawa, K. &Suzuki, S. (1975) Purification of keratan sulfate-endogalactosidase and its action on keratan sulfates of different origin.J. Biol. Chem. 250, 912–17.
Petryniak, J. &Goldstein, I. J. (1986) Immunochemical studies on the interaction between synthetic glycoconjugates and α-l-fucosyl binding lectins.Biochemistry 25, 2829–38.
Shur, B. D. (1984) The receptor function of galactosyltransferase during cellular interactions.Mol. Cell. Biochem. 267, 5700–11.
Sorrell, J. M. &Caterson, B. (1990) Monoclonal antibodies specific for keratan sulfate detect epithelial-associated carbohydrates.Histochemistry 94, 269–75.
Sorrell, J. M., Caterson, B., Caplan, A. I., Davis, B. &Schafer, A. I. (1990) Human keratinocytes contain carbohydrates that are recognized by keratan sulfate-specific monoclonal antibodies.J. Invest. Dermatol. 95, 347–52.
Tang, P. W., Scudder, P., Mehmet, H., Hounsell, E. F. &Feizi, T. (1986) Sulphate groups are involved in the antigenicity of keratan sulphate and mask i antigen expression on their poly-N-acetyllactosamine backbones. An immunochemical and chromatographic study of keratan sulphate oligosaccharides.Eur. J. Biochem. 160, 537–45.
Varsano, S., Basbaum, C. B., Forsberg, L. S., Borson, D. B., Caughey, G. &Nadel, J. A. (1987) Dog tracheal epithelial cells in culture synthesize sulfated macromolecular glycoconjugates and release them from the cell surface upon exposure to extracellular proteinases.Exp. Lung Res. 13, 157–84.
Yokota, M., Ito, N., Hirota, T., Yane, K., Tanaka, O., Miyahara, H. &Matsunaga, T. (1995) Histochemical differences of the lectin affinities of backbone polylactosamine structures carrying the ABO blood group antigens in papillary carcinoma and other types of thyroid neoplasms.Histochem. J. 27, 139–47.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ito, N., Yokota, M., Nagaike, C. et al. Simultaneous expression of keratan sulphate epitope (a sulphated poly-N-acetyllactosamine) and blood group ABH antigens in papillary carcinomas of the human thyroid gland. Histochem J 28, 613–623 (1996). https://doi.org/10.1007/BF02331382
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02331382