Skip to main content

Advertisement

Log in

Vasoactive hormones and cAMP affect pericyte contraction and stress fibresin vitro

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Pericytes are contractile cells of the microvascular wall that may influence capillary haemodynamics and permeability. We examined the contractile responses of cultured pericytes to selected vasoactive agents and cAMP agonists. Morphological and biochemical changes associated with these responses were also studied. Pericytes seeded onto silicone rubber contracted when stimulated with histamine or serotonin, relaxed in response to the beta-adrenergic agonist isoproterenol and did not respond to epinephrine. Since hormonal-induced relaxation of vascular smooth muscle involves cAMP, we investigated the ability of cAMP, to modulate pericyte contraction. Dibutyryl cAMP and forskolin (an adenylate cyclase activator) both induced pericyte relaxation and elevated intracellular cAMP levels. Isoproterenol increased cAMP levels but epinephrine had no effect. However, when epiniphrine and isoproterenol were co-incubated with the phosphodiesterase inhibitor 3-isobutyl-l-methylxanthine (IBMX), cAMP was increased to levels above those elicited by these agonists alone. Serotonin and histamine in the presence of IBMX did not affect cAMP levels. These results suggest that certain vasoactive agents may relax pericytes by cAMP-dependent processes. We have shown previously that stress fibres are also involved in pericyte contraction. Hence, changes in the staining patterns of stress fibres in response to these selected agonists were studied. Histamine, serotonin and epinephrine had no apparent effect on stress fibre staining. Dibutyryl cAMP, forskolin, and isoproterenol, which relax pericytes and increase cAMP, disassembled fibres. In summary, the results demonstrate that the contractile activity of cultured pericytesin vitro can be regulated by vasoactive agonists and that changes in cAMP and stress fibres may mediate the regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cAMP:

cyclic adenosine 3′,5′-monophosphate

dBcAMP:

dibutyryl cyclic adenosine 3′5′-monophosphate

DiL-Ac-LDL:

1,1′-dioctadecyl 1-3,3,3′,3′ tetramethylindo-carbocyanine perchlorate

DME:

Dulbecco's Modified Eagles Medium

FCS:

foetal calf serum

HBSS:

Hanks balanced salt solution

IBMX:

3-isobutyl-1-methylxanthine

PBS:

phosphate buffered saline

R020-1724:

(4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone

TCA:

trichloroacetic acid

References

  • Abboud, H. E., Ou, S. L., Velsoa, J. A., Shah, S. V. &Dousa, J. P. (1982) Dynamics of renal histamine in normal rat kidney and in nephrosis induced by aminonucleoside of puromycin.J. clin. Invest. 69, 327–36.

    PubMed  Google Scholar 

  • Adelstein, R. S. (1980) Phosphorylation of muscle contractile proteins.Fed. Proc. 39, 1544–6.

    PubMed  Google Scholar 

  • Barak, L. S., Yocum, R. R., Nothwagel, E. A. &Webb, W. W. (1980) Fluorescence staining of the actin cytoskeleton in living cells with 7-nitrobenz-2-oxa-1,3-diazaole phallicidin.Proc. Natl Acad. Sci. USA 77, 980–4.

    PubMed  Google Scholar 

  • Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem 72, 248–54.

    PubMed  Google Scholar 

  • Conti, M. A. &Adelstein, R. S. (1980) Phosphorylation by cyclic adenosine 3′,5′-monophosphate-dependent protein kinase regulates myosin light chain kinase.Fed. Proc. 39, 1569–73.

    PubMed  Google Scholar 

  • De Clerck, F., De Brabander, M., Neels, H. & Van deVelde, V. (1981) Direct evidence for the contractile capacity of endothelial cells.Thromb. Res. 23, 505–20.

    PubMed  Google Scholar 

  • Frattini, P. M., Cucchi, L., Santagostina, G. &Corona, G. L. (1979) A sensitive fluorometric method for platelet bound and plasma free serotonin.Clin. Chem. Acta 92, 353–60.

    Google Scholar 

  • Gitlin, J. D. &D'Amore, P. A. (1983) Culture of retinal capillary cells using selective growth media.Microvasc. Res. 26, 74–80.

    PubMed  Google Scholar 

  • Grega, G. J., Adamski, S. W. &Dobbins, D. E. (1986) Physiological and pharmacological evidence for the regulation of permeability.Fed. Proc. 45, 96–9.

    PubMed  Google Scholar 

  • Hammersen, F. (1980) Endothelial contractility — does it exist?Adv. Microcirc. 9, 95–134.

    Google Scholar 

  • Harris, A. K., Wild, P. &Stopak, D. (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion.Science, Wash. DC 208, 177–9.

    Google Scholar 

  • Herman, I. M. &D'Amore, P. A. (1985) Microvascular pericytes contain muscle and non-muscle actins.J. Cell Biol. 101, 43–52.

    PubMed  Google Scholar 

  • Isenberg, G., Rathke, P. C., Hulsman, N., Franke, W. W. &Wolfarth-Botterman, K. E. (1976) Cytoplasmic actomyosin fibrils in tissue culture cells: direct proof of contractility by visualization of ATP-induced contraction in fibrils isolated by laser microbeam dissection.Cell Tissue Res,166, 427–33.

    PubMed  Google Scholar 

  • Jaffe, E. A., Hoyer, L. W. &Nachman, R. L. (1973) Synthesis of antihemophilic factor antigen by cultured human endothelial cells.J. clin. Invest. 52, 2757–64.

    PubMed  Google Scholar 

  • Joyce, N. C., Haire, M. F. &Palade, G. E. (1985a) Contractile proteins in pericytes. I, Immunoperoxidase localization of tropomyosin.J. Cell Biol. 100, 1379–86.

    PubMed  Google Scholar 

  • Joyce, N. C., Haire, M. F. &Palade, G. E. (1985b) Contractile proteins in pericytes. II. Immunocytochemical evidence for the presence of two isomyosins in graded concentrations.J. Cell Biol. 100, 1387–94.

    PubMed  Google Scholar 

  • Kelley, C., D'Amore, P., Hechtman, H. B. &Shepro, D. (1987) Microvascular pericyte contractilityin vitro: comparison with other cells of the vascular wall.J. Cell Biol. 104, 483–90.

    PubMed  Google Scholar 

  • Kreisberg, J. I., Venkatachalam, M. A. &Patel, P. Y. (1984) Cyclic AMP-associated shape change in mesangial cells and its reversal by prostaglandin E2.Kidney Int. 25, 874–9.

    PubMed  Google Scholar 

  • Kreisberg, J. I., Venkatachalam, M. A., Radnik, R. A. &Patel, P. Y. (1985) Role of myosin light chain phosphorylation and microtubules in stress fibre morphology in cultured mesangial cells.Am. J. Physiol. 249, F227–35.

    PubMed  Google Scholar 

  • Majno, G., Shea, S. M. &Leventhal, M. (1969) Endothelial contraction induced by histamine-type mediators. An electron microscopic study.J. Cell Biol. 42, 647–72.

    PubMed  Google Scholar 

  • Makarski, J. S. (1981) Stimulation of cyclic AMP production by vasoactive agents in cultured bovine aortic and pulmonary artery endothelial cells.In Vitro 17, 450–8.

    PubMed  Google Scholar 

  • Marciniak, D. L., Dobbins, D. E., Maciejko, J. J., Scott, J. B., Haddy, F. J. &Grega, G. J. (1978) Antagonism of histamine edema formation by catecholamines.Am. J. Physiol. 234, H110–85.

    Google Scholar 

  • Rall, T. W. (1980) Central nervous system stimulants. The xanthines. InThe Pharmacological Basis of Therapeutics, 6th edn pp. 595–7. New York: Macmillan Publishing Co.

    Google Scholar 

  • Rhodin, J. A. G. (1967) The ultrastructure of mammalian arterioles and precapillary sphincters.J. Ultrastruct. Res 18, 181–223.

    PubMed  Google Scholar 

  • Rippe, B. &Girega, G. J. (1978) Effect of isoprenaline and cooling on histamine-induced changes of capillary permeability in the rat hindquarter vascular bed.Acta Physiol. Scand. 103, 252–62.

    PubMed  Google Scholar 

  • Rouget, C. (1873) Memoire sur les development, la structure et les proprietes physiologiques des capillaires sanguine et lymphatiques.Arch. Physiol. Norm. Pathol. 5, 603–33.

    Google Scholar 

  • Schafer, A. I., Gimbrone, M. A. &Handin, R. I. (1980) Endothelial cell adenylate cyclase: activation by catecholamines and prostaglandin 12.Biochem. Biophys. Res. Comm. 96, 1640–7.

    PubMed  Google Scholar 

  • Seamon, K. B. &Daly, J. W. (1981) Forskolin: a unique diterpene activator of cyclic AMP-generating systems.J. Cyclic Nucl. Res. 7, 201–24.

    Google Scholar 

  • Sedor, J. R. &Abboud, H. E. (1985) Histamine modulates contraction and cyclic nucleotides in cultured rat mesangial cells after multiple passage,J. clin. Invest. 75, 1679–89.

    PubMed  Google Scholar 

  • Snedecor, G. W. &Cochran, W. G. (1967)Statistical Methods, 6th edn. Iowa: Iowa State University Press.

    Google Scholar 

  • Svensjo, E., Persson, C. G. A. &Rutili, G. (1977) Inhibition of bradykinin induced macromolecular leakage from post-capillary venules by a beta2-adrenoceptor stimulant, terbutaline.Acta Physiol Scand. 101, 504–6.

    PubMed  Google Scholar 

  • Tilton, R. G., Kilo, C., Williamson, J. R. &Murch, D. W. (1979) Differences in pericyte contractile function in rat cardiac and skeletal muscle microvasculatures.Microvasc. Res. 18, 336–52.

    PubMed  Google Scholar 

  • Venkatachalam, M. A. &Kreisberg, J. I. (1985) Agonist-induced isotonic contraction of cultured mesangial cells after multiple passage.Am. J. Physiol. 249, C48–55.

    PubMed  Google Scholar 

  • Voyta, J. C., Via, D. P. &Zetter, B. R. (1984) Identification and isolation of endothelial cells based on their increased uptake of acetylated low density lipoprotein.J. Cell Biol. 99, 2034–2040.

    PubMed  Google Scholar 

  • Whorton, A. R., Collawn, J. B., Montgomery, M. E., Young, S. L. &Kent, R. S. (1985) Arachidonic acid metabolism in cultured aortic endothelial cells: effect of cAMP and 3-isobutyl-1-lmethylxanthine.Biochem. Pharmacol. 34, 119–23.

    PubMed  Google Scholar 

  • Zimmerman, K. W. (1923) Die feinere Bau der Blutcapillaren.Z. Anal. Entwicklungsgesch. 68, 3–109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelley, C., D'Amore, P., Hechtman, H.B. et al. Vasoactive hormones and cAMP affect pericyte contraction and stress fibresin vitro . J Muscle Res Cell Motil 9, 184–194 (1988). https://doi.org/10.1007/BF01773740

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01773740

Keywords