Skip to main content

Cytoplasmic fibrils in living cultured cells

A light and electron microscope study

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

By a combined light and electron microscopic study, the structure and behavior of the stress fibers of cultured rat embryo cells are described. From an analysis of movie records of living cells it is seen that the stress fibers are in a state of flux, continually altering their dimensions and dispositions within the cell. However, compared to most other cellular movements, these rates of change are slow. By electron microscopy it is shown that the stress fibers consist of bundles of close packed elongate 75 Å filaments, arranged just beneath the plasma membrane adjacent to the cell's plane of attachment and that similar filaments, forming a loose framework, permeate the cytoplasmic matrix. On the basis of careful light and electron microscopic comparisons, it is concluded that the filamentous structure shown within the cytoplasm of glutaraldehyde/osmium-fixed cells is a generally accurate representation of the structure of the living cell cytoplasm. It seems likely that the stress fibers are concerned in stabilizing areas of cellular attachment as well as with resisting forces that stretch the cell. The suggestion is made that, by controlling cytoplasmic viscosity and responding to cytoplasmic microtubules, the diffuse framework of filaments helps to determine the form of the cell and that, by a coordinate dynamic activity of its filaments, it provides the motive power for the various forms of cellular and intracellular movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amos, H., 1965: Personal communication.

  • Astbury, W. T., 1947: On the structure of biological fibres and the problem of muscle. Proc. Roy. Soc. London B,134, 303–328.

    Google Scholar 

  • Baccetti, B., 1965: Nouvelles observations sur l'ultrastructure du myofilament. J. Ultrastructure Res.13, 245–256.

    Google Scholar 

  • Bang, F. B., and G. O. Gey, 1948: A fibrillar structure in rat fibroblasts as seen by electron microscopy. Proc. Soc. exp. Biol. Med.69, 86–89.

    Google Scholar 

  • Bessis, M., and J. Breton-Gorius, 1965: Rôle des fibrilles cytoplasmiques dans la lobulation du noyau cellulaire (Formation des cellules de Rieder). C. r. Acad. Sri., Paris261, 1392–1393.

    Google Scholar 

  • Buckley, I. K., 1964 a: Phase contrast observations on the endoplasmic reticulum of living cells in culture. Protoplasma59, 569–588.

    Google Scholar 

  • —, 1964 b: Behavior of the endoplasmic reticulum in living cultured cells (film). J. Cell Biol.23, 106 A.

    Google Scholar 

  • Byers, B., and K. R. Porter, 1964: Oriented microtutbules in elongating cells of the developing lens rudiment after induction. Proc. Nat. Acad. Sci. U.S.A.52, 1091–1099.

    Google Scholar 

  • Cloney, R. A., 1966: Cytoplasmic filaments and cell movements: epidermal cells during Ascidian metamorphosis. J. Ultrastructure Res.14, 300–327.

    Google Scholar 

  • De Petris, S., G. Karlsbad, and B. Pernis, 1962: Filamentous structures in the cytoplasm of normal mononuclear phagocytes. J. Ultrastructure Res.7, 39–55.

    Google Scholar 

  • Ellis, R. A., 1965: Fine structure of the myoepithelium of the eccrine sweat glands of man. J. Cell Biol.27, 551–563.

    Google Scholar 

  • Fawcett, D., 1961:Cilia and flagella. In: The Cell (J. Brachet and A. E. Mirsky, editors), New York & London: Academic Press,2, 217–297.

    Google Scholar 

  • —, 1966: An Atlas of Fine Structure. The Cell. Philadelphia & London: W. B. Saunders Co.

    Google Scholar 

  • Fischer, A., 1946: Biology of Tissue Cells. Copenhagen, Gyldendakke Boghandel.

    Google Scholar 

  • Frederic, J., and M. Chevremont, 1952: Recherches sur les chondriosomes des cellules vivantes par la microscopie et la microcinematographie en contraste de phase. Arch. Biol., Paris,63, 109–131.

    Google Scholar 

  • Frey-Wyssling, A., 1953: Submicroscopic Morphology of Protoplasm. Amsterdam: Elsevier Publishing Co., 2nd English ed.

    Google Scholar 

  • Gey, G. O., M. K. Gey, W. M. Firor, and W. O. Self, 1948: Cultural and cytologic studies on autologous normal and malignant cells of specificin vitro origin. Acta Un. int. Cancr.6, 706–712.

    Google Scholar 

  • Goldberg, B., and H. Green, 1964: An analysis of collagen secretion by established mouse fibroblast lines. J. Cell Biol.22, 227–258.

    Google Scholar 

  • Griffin, J. L., 1965: Fixation and visualization of microfilaments and microtubules and their significance in the movement of four types of amoeboid cells. J. Cell Biol.27, 39 A.

    Google Scholar 

  • Heidenhain, M., 1899: Über die Struktur der Darmepithelzellen. Arch. mikrosk. Anat. Entw. Mech.54, 184–224.

    Google Scholar 

  • Hoffmann-Berling, H., 1964: Relaxation of fibroblast cells. In: Primitive Motile Systems in Cell Biology (R. D. Allen and N. Kamiya, editors), New York & London: Academic Press, 365–374

    Google Scholar 

  • Holtfreter, J., 1948: Significance of the cell membrane in embryonic processes. Ann. N. Y. Acad. Sci.49, 709–755.

    Google Scholar 

  • Huxley, H. E., 1960: Muscle cells. In: The Cell (J. Brachet and A. E. Mirsky, editors), New York & London: Academic Press,4, 365–481.

    Google Scholar 

  • Jarosch, R., 1956: Plasmaströmung und Chloroplastenrotation bei Characeen. Phyton, Buenos Aires,6, 87–107.

    Google Scholar 

  • —, 1957: Zur Mechanik der Protoplasmafibrillenbewegung. Biochem. biophys. Acta25, 204–205.

    Google Scholar 

  • —, 1964: Screw-mechanical basis of protoplasmic movement. In: Primitive Motile Systems in Cell Biology (R. D. Allen and N. Kamiya, editors), New York & London: Academic Press, 599–620.

    Google Scholar 

  • Kamiya, N., 1959: Protoplasmic streaming. In: Protoplasmatologia (L. V. Heilbrunn and F. Weber, editors), Wien: Springer-Verlag,8, No. 3 a.

    Google Scholar 

  • Karnovsky, M. J., 1965: A formaldehyide-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol.27, 137 A.

    Google Scholar 

  • Kuroda, K., 1964: Behavior of naked cytoplasmic drops isolated from plant cells. In: Primitive Motile Systems in Cell Biology (R. D. Allen and N. Kamiya, editors), New York & London: Academic Press, 31–41.

    Google Scholar 

  • Lewis, W. H., and M. R. Lewis, 1924: Behavior of cells in tissue cultures. In: General Cytology (E. V. Cowdry, editor), Chicago, Illinois: The University of Chicago Press, 385–447.

    Google Scholar 

  • Lowy, J., and J. Hanson, 1962: Ultrastructure of invertebrate smooth muscles. Physiol. Rev. Supplement No.5, 34–47.

    Google Scholar 

  • Majno, G., 1964: Death of liver tissue. A review of cell death, necrosis, and autolysis. In: The Liver (Ch. Rouiller, editor), New York: Academic Press,2, 267–313.

    Google Scholar 

  • Mann, G., 1902: Physiological Histology (methods and theory). Oxford: Clarendon Press.

    Google Scholar 

  • Munro, T. R., M. R. Daniel, and J. T. Dingle, 1964: Lysosomes in Chinese hamster fibroblasts in culture. Expl. Cell Res.35, 515–530.

    Google Scholar 

  • Nachmias, V. T., 1964: Fibrillar structures in the cytoplasm ofChaos chaos. J. Cell Biol.23, 183–188.

    Google Scholar 

  • Palade, G. E., 1952: A study of fixation for electron microscopy. J. exp. Med.95, 285–297.

    Google Scholar 

  • Porter, K. R., 1953: Observations on a submicroscopic basophilic component of cytoplasm. J. exp. Med.97, 727–750.

    Google Scholar 

  • —, A. Claude, and E. F. Fullam, 1945: A study of tissue culture cells by electron microscopy. J. exp. Med.81, 233–244.

    Google Scholar 

  • —, N. Kawakami, and M. C. Ledbetter, 1965: Structural basis of streaming inPhysarum polycephalum. J. Cell Biol.27, 78 A.

    Google Scholar 

  • —, M. C. Ledbetter, and S. Badenhausen, 1964: The microtubule in cell fine structure as a constant accompaniment of cytoplasmic movements. Electron Microscopy 1964. Proceedings of 3rd European Regional Conference on Electron Microscopy held in Prague (M. Titlebach, editor). Volume B. Prague: Czechoslovak Academy of Sciences, 119–120.

    Google Scholar 

  • —, and G. D. Pappas, 1959: Collagen formation by fibroblasts of the chick embryo dermis. J. Biophys. Biochem. Cytol.5, 153–166.

    Google Scholar 

  • Rebhun, L. I., and R. Nagai, 1965: Microtubules and microfilaments: evaluation of their roles in primitive motility J. Cell Biol.27, 81 A.

    Google Scholar 

  • Reynolds, E. S., 1963: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Bid.17, 208–212.

    Google Scholar 

  • Rhodin, J. A. G., 1962: Fine structure of vascular walls in mammals with special reference to smooth muscle component. Physiol. Rev. Supplement No.5, 48–81.

    Google Scholar 

  • Robbins, E., and N. K. Gonatas, 1964:In vitro selection of the mitotic cell for subsequent electron microscopy. J. Cell Biol.20, 356–359.

    Google Scholar 

  • Rose, G. G., and M. Cattoni, 1963: Mosaic patterns of stromal cells in tissue cultures. In: Cinemicrography in Cell Biology (G. G. Rose, editor), New York & London: Academic Press, 445–469.

    Google Scholar 

  • —, C. M. Pomerat, T. O. Shindler, and J. B. Trunnell, 1958: A cellophanestrip technique for culturing tissue in multipurpose culture chambers. J. Biophys. Biochem. Cytol.4, 761–764.

    Google Scholar 

  • Taylor, A. C., 1966: Microtubules in the microspikes and cortical cytoplasm of isolated cells. J. Cell Biol.28, 155–168.

    Google Scholar 

  • Watson, M. L., 1958: Staining of tissue sections for electron microscopy with heavy metals. J. Biophys. Biochem. Cytol.4, 475–478.

    Google Scholar 

  • Wilson, E. B., 1937: The Cell in Development and Heredity. New York: The Macmillan Co., 3rd ed. 64.

    Google Scholar 

  • Wohlfarth-Bottermann, K. E., 1961: Cytologische Studien VIII. Zum Mechanismus der Cytoplasmaströmung in dünnen Fäden. Protoplasma54, 1–26.

    Google Scholar 

  • —, 1964: Differentiations of the ground cytoplasm and their significance for the generation of the motive force of amoeboid movement. In: Primitive Motile Systems in Cell Biology (R. D. Allen and N. Kamiya, editors), New York & London: Academic Press, 79–108.

    Google Scholar 

  • Wolpert, L., C. M. Thompson, and C. H. O'Neil, 1964: Studies on the isolated membrane and cytoplasm of Amoeba proteus in relation to amoeboid movement. In: Primitive Motile Systems in Cell Biology (R. D. Allen and N. Kamiya, editors), New York & London: Academic Press, 143–168.

    Google Scholar 

  • Yotsuyanagi, Y., 1953: Recherches sur les phénomènes moteurs dans les fragments de protoplasme isolés. II. Mouvements divers déterminés par la condition de milieu. Cytologia18, 202–217.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckley, I.K., Porter, K.R. Cytoplasmic fibrils in living cultured cells. Protoplasma 64, 349–380 (1967). https://doi.org/10.1007/BF01666538

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01666538

Keywords