Skip to main content

The effect of platelet-derived growth factor on morphology and motility of human glial cells

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Platelet-derived growth factor (PDGF) is a mitogen for several cell types in culture. It is documented in this work that one of the earliest effects of PDGF on serum-starved glial cells is an induction of intensive motile activity. Within the first minute after the addition of PDGF thin membrane lamellae grow out around almost all of the cell circumference. Later, circular arrangements of small ruffles appear on the dorsal surface of the cells. These rings of ruffles vary in size and some encircle almost the whole cell. The organization of the peripheral weave of microfilaments in the PDGF-induced advancing lamellae was closely similar to that of normally growing cells. In the regions of the circular arrangements of ruffles there was an extensive reorganization of the surface actin with unusual arrangements of microfilament bundles and polygonal networks. There was also a general intensification of the translocation of membrane ruffles and spikes from the cell periphery towards the centre of the cell, increased micropinocytotic activity and shuttling of intracellular particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ABERCROMBIE, M., HEAYSMAN, J. E. M. & PEGRUM, S. M. (1970) The locomotion of fibroblasts in culture. III. Movements of particles on the dorsal surface of the leading lamella.Expl Cell Res. 62, 389–98.

    Google Scholar 

  • ALBRECHT-BUEHLER, G. & GOLDMAN, R. D. (1976) Microspike-mediated particle transport towards the cell body during early spreading of 3T3 cells.Expl Cell Res. 97, 329–39.

    Google Scholar 

  • ALBRECHT-BUEHLER, G. & LANCASTER, R. M. (1976) A quantitative description of the extension and retraction of surface protrusions in spreading 3T3 mouse fibroblasts.J. Cell Biol. 71, 370–82.

    Google Scholar 

  • AMBROS, V. R., CHEN, L. B. & BUCHANAN, J. M. (1975) Surface ruffles as markers for studies of cell transformation by Rous sarcoma virus.Proc. natn. Acad. Sci. 72, 3144–8.

    Google Scholar 

  • ANTONIADES, H. N. (1981) Human platelet-derived growth factor (PDGF): Purification of PDGF-I and PDGF-II separation of their reduced subunits.Proc. natn. Acad. Sci. 78, 7314–7.

    Google Scholar 

  • ANTONIADES, H. N., SCHER, C. D. & STILES, C. D. (1979) Purification of human platelet-derived growth factor.Proc. natn. Acad. Sci. 76, 1809–13.

    Google Scholar 

  • BELLAIRS, R., CURTIS, A. & DUNN, G. (editors) (1982)Cell Behaviour. A Tribute To Abercrombie. Cambridge: Cambridge University Press.

    Google Scholar 

  • BOSCHEK, C. B., JOCKUSCH, B. M., FRIIS, R. R., BACK, R., GRUNDMANN, E. & BAUER, H. (1981) Early changes in the distribution and organization of microfilament proteins during cell transformation.Cell 24, 175–84.

    Google Scholar 

  • BOWEN-POPE, D. F. & ROSS, R. (1982) Platelet-derived growth factor. Specific binding to cultured cells.J. biol. Chem. 257, 5161–71.

    Google Scholar 

  • BRAGINA, E. E., VASILIEV, Ju. M. & GELFAND, I. M. (1976) Formation of bundles of microfilaments during spreading of fibroblasts on the substrate.Expl Cell Res. 97, 241–8.

    Google Scholar 

  • BRUNK, U., SCHELLENS, J. & WESTERMARK, B. (1976) Influence of epidermal growth factor (EGF) on ruffling activity, pinocytosis, and proliferation of cultivated human glia cells.Expl Cell Res. 103, 295–302.

    Google Scholar 

  • BURRIDGE, K. & FERAMISCO, J. R. (1980) Microinjection and localization of a 130K protein in living fibroblasts: a relationship to actin and fibronectin.Cell 19, 587–95.

    Google Scholar 

  • CARLSSON, L. (1979) Cell motility; the possible role of unpolymerized actin.Acta universitatis upsaliensis 537, 1–65.

    Google Scholar 

  • CARPENTER, G. & COHEN, S. (1976)125I-labeled human epidermal growth factor. Binding, internalization, and degradation in human fibroblasts.J. Cell Biol. 71, 159–71.

    Google Scholar 

  • CHINKERS, M. & COHEN, S. (1981) Purified EGF receptor-kinase interacts specifically with antibodies to Rous sarcoma virus transforming protein.Nature 290, 516–9.

    Google Scholar 

  • CHINKERS, M., McKANNA, J. A. & COHEN, S. (1979) Rapid induction of morphological changes in human carcinoma cells A-431 by epidermal growth factor.J. Cell Biol. 83, 260–5.

    Google Scholar 

  • CHINKERS, M., McKANNA, J. A. & COHEN, S. (1981) Rapid rounding of human epidermoid carcinoma cells A-431 induced by epidermal growth factor.J. Cell Biol. 88, 422–9.

    Google Scholar 

  • COHEN, S., CARPENTER, G. & KING, L. Jr. (1980) Epidermal growth factor-receptor-protein kinase interactions. Co-purification of receptor and epidermal growth factor-enhanced phosphorylation activity.J. biol. Chem. 255, 4834–42.

    Google Scholar 

  • COLLINS, V. P., ARBORGH, B. & BRUNK, U. (1977) A comparison of the effects of three widely used glutaraldehyde fixatives on cellular volume and structure.Acta path. microbiol. scand. A 85, 157–68.

    Google Scholar 

  • COOPER, J. A., BOWEN-POPE, D. F., RAINES, E., ROSS, R. & HUNTER, T. (1982) Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins.Cell 31, 263–73.

    Google Scholar 

  • DEUEL, T. F., HUANG, J. S., PROFFITT, R. T., BAENZIGER, J. U., CHANG, D. & KENNEDY, B. B. (1981) Human platelet-derived growth factor. Purification and resolution into two active protein fractions.J. biol. Chem. 256, 8896–9.

    Google Scholar 

  • DEUEL, T. F., SENIOR, R. M., HUANG, J. S. & GRIFFIN, G. L. (1982) Chemotaxis of monocytes and neutrophils to platelet-derived growth factor.J. clin. Invest. 69, 1046–9.

    Google Scholar 

  • EK, B. & HELDIN, C.-H. (1982) Characterization of a tyrosine-specific kinase activity in human fibroblast membranes stimulated by platelet-derived growth factor.J. biol. Chem. 257, 10486–92.

    Google Scholar 

  • EK, B., WESTERMARK, B., WASTESON, Å. & HELDIN, C.-H. (1982) Stimulation of tyrosine-specific phosphorylation by platelet-derived growth factor.Nature 295, 419–20.

    Google Scholar 

  • GEIGER, B. (1979) A 130K protein from chicken gizzard: Its localization at the termini of microfilament bundles in cultured chicken cells.Cell 18, 193–205.

    Google Scholar 

  • GEIGER, B., TOKUYASU, K. T., DUTTON, A. H. & SINGER, S. J. (1980) Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes.Proc. natn. Acad. Sci. U.S.A. 77, 4127–31.

    Google Scholar 

  • GILMER, T. M. & ERIKSON, R. L. (1981) Rous sarcoma virus transforming protein, p60src, expressed in E. coli, functions as a protein kinase.Nature 294, 771–3.

    Google Scholar 

  • GLEEN, K., BOWEN-POPE, D. F. & ROSS, R. (1982) Platelet-derived growth factor. III. Identification of a platelet-derived growth factor receptor by affinity labeling.J. biol. Chem. 257, 5172–6.

    Google Scholar 

  • GORDEN, P., CARPENTIER, J.-L., COHEN, S. & ORCI, L. (1978) Epidermal growth factor: Morphological demonstration of binding, internalization, and lysosomal association in human fibroblasts.Proc. natn. Acad. Sci. 75, 5025–9.

    Google Scholar 

  • GROTENDORST, G. R., SEPPÄ, H. E. S., KLEINMAN, H. K. & MARTIN, G. R. (1981) Attachment of smooth muscle cells to collagen and their migration toward platelet-derived growth factor.Proc. natn. Acad. Sci. 78, 3669–72.

    Google Scholar 

  • HAIGLER, H. T., McKANNA, J. A. & COHEN, S. (1979) Direct visualization of the binding and internalization of a ferritin conjugate of epidermal growth factor in human carcinoma cells A-431.J. Cell Biol. 81, 382–95.

    Google Scholar 

  • HAM, R. G. & McKEEHAN, W. L. (1979) Media and growth requirements. InMethods of Enzymology, Vol. LVIII. pp. 44–93. New York, London: Academic Press.

    Google Scholar 

  • HELDIN, C.-H., WESTERMARK, B. & WASTESON, Å. (1979) Platelet-derived growth factor: Purification and partial characterization.Proc. natn. Acad. Sci. 76, 3722–6.

    Google Scholar 

  • HELDIN, C.-H., WASTESON, Å. & WESTERMARK, B. (1980) Growth of normal human glial cells in a defined medium containing platelet-derived growth factor.Proc. natn. Acad. Sci. 77, 6611–5.

    Google Scholar 

  • HELDIN, C.-H., WASTESON, Å. & WESTERMARK, B. (1982) Interaction of platelet-derived growth factor with its fibroblast receptor. Demonstration of ligand degradation and receptor modulation.J. biol. Chem. 257, 4216–21.

    Google Scholar 

  • HELDIN, C.-H., WESTERMARK, B. & WASTESON, Å. (1981a) Platelet-derived growth factor. Isolation by a large-scale procedure and analysis of subunit composition.Biochem. J. 193, 907–13.

    Google Scholar 

  • HELDIN, C.-H., WESTERMARK, B. & WASTESON, Å. (1981b) Specific receptors for platelet-derived growth factor on cells derived from connective tissue and glia.Proc. natn. Acad. Sci 78, 3664–8.

    Google Scholar 

  • HERMAN, I. M., CRISONA, N. J. & POLLARD, T. D. (1981) Relation between cell activity and the distribution of cytoplasmic actin and myosin.J. Cell Biol. 90, 84–91.

    Google Scholar 

  • HÖGLUND, A.-S., KARLSSON, R., ARRO, E., FREDRIKSSON, B.-A. & LINDBERG, U. (1980) Visualization of the peripheral weave of microfilaments in glia cells.J. Musc. Res. Cell Motility 1, 127–46.

    Google Scholar 

  • HUANG, J. S., HUANG, S. S., KENNEDY, B. & DEUEL, T. F. (1982) Platelet-derived growth factor. Specific binding to target cells.J. biol. Chem. 257, 8130–6.

    Google Scholar 

  • HUNTER, T. & SEFTON, B. M. (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine.Proc. natn. Acad. Sci. U.S.A. 77, 1311–5.

    Google Scholar 

  • HUNTER, W. M. & GREENWOOD, F. C. (1962) Preparation of iodine-131 labelled human growth hormone of high specific activity.Nature 194, 495–6.

    Google Scholar 

  • JOCKUSCH, B. M. & ISENBERG, G. (1981) Interaction of α-actinin and vinculin with actin: Opposite effects on filament network formation.Proc. natn. Acad. Sci. U.S.A. 78, 3005–9.

    Google Scholar 

  • JOHNSSON, A., HELDIN, C.-H., WESTERMARK, B. & WASTESON, Å. (1982) Platelet-derived growth factor: Identification of constituent polypeptide chains.Biochem. biophys. Res. Commun. 104, 66–74.

    Google Scholar 

  • KAPLAN, D. R., CHAO, F. C., STILES, C. D., ANTONAIDES, H. N. & SCHER, C. D. (1979) Platelet α-granules contain a growth factor for fibroblasts.Blood 53, 1043–52.

    Google Scholar 

  • KAWAMURA, A., Jr. (1969)Fluorescent Antibody Techniques and Their Applications. Tokyo: University of Tokyo Press.

    Google Scholar 

  • KING, A. C. & CUATRECASAS, P. (1981) Peptide hormone-induced receptor mobility, aggregation, and internalization.New Engl. J. Med. 305, 77–88.

    Google Scholar 

  • LAZARIDES, E. (1976) Actin, α-actinin, and tropomyosin interaction in the structural organization of actin filaments in nonmuscle cells.J. Cell Biol. 68, 202–19.

    Google Scholar 

  • LINDBERG, U., HÖGLUND, A. S. & KARLSSON, R. (1981) On the ultrastructural organization of the microfilament system and the possible role of profilactin.Biochimie 63, 307–23.

    Google Scholar 

  • NISHIMURA, J., HUANG, J. S. & DEUEL, T. F. (1982) Platelet-derived growth factor stimulates tyrosine-specific protein kinase activity in Swiss mouse 3T3 cell membranes.Proc. natn. Acad. Sci. 79, 4303–7.

    Google Scholar 

  • OSBORN, M. & WEBER, K. (1977) The detergent-resistant cytoskeleton of tissue culture cells includes the nucleus and the microfilament bundles.Expl Cell Res. 106, 339–49.

    Google Scholar 

  • OSBORN, M., BORN, T., KOITSCH, H.-J. & WEBER, K. (1978) Stereo immunofluorescence microscopy: I. Three-dimensional arrangement of microfilaments, microtubules and tonofilaments.Cell 14, 477–88.

    Google Scholar 

  • POSTE, G. & NICOLSON, G. L. (editors) (1981)Cell Surface Reviews, Vol. 7.Cytoskeletal elements and plasma membrane organization. Amsterdam: North-Holland.

    Google Scholar 

  • RAINES, E. W. & ROSS, R. (1982) Platelet-derived growth factor. I. High yield purification and evidence for multiple forms.J. biol. Chem. 257, 5154–60.

    Google Scholar 

  • ROSS, R. (1981) The platelet-derived growth factor. InTissue Growth Factors, Vol. 57, (edited by BASERGA, R.), pp. 133–159. Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  • SCHER, C. D., SHEPARD, R. C., ANTONIADES, H. N. & STILES, C. D. (1979) Platelet-derived growth factor and the regulation of the mammalian fibroblast cell cycle.Biochim. Biophys. Acta 560, 217–41.

    Google Scholar 

  • SCHLESSINGER, J. & GEIGER, B. (1981) Epidermal growth factor induces redistribution of actin and α-actinin in human epidermal carcinoma cells.Expl Cell Res. 134, 273–79.

    Google Scholar 

  • SEFTON, B. M. & HUNTER, T. (1981) Vinculin: A cytoskeletal target of the transforming protein of Rous sarcoma virus.Cell 24, 165–74.

    Google Scholar 

  • SEPPÄ, H., GROTENDORST, G., SEPPÄ, S., SCHIFFMANN, E. & MARTIN, G. R. (1982) Platelet-derived growth factor is chemotactic for fibroblasts.J. Cell Biol. 92, 584–8.

    Google Scholar 

  • SHRIVER, K. & ROHRSCHNEIDER, L. (1981) Organization of pp60src and selected cytoskeletal proteins within adhesion plaques and junctions of Rous sarcoma virus-transformed rat cells.J. Cell Biol. 89, 525–35.

    Google Scholar 

  • SMALL, J. V. & L'ANGANGER, G. (1981) Organization of actin in the leading edge of cultured cells: Influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks.J. Cell Biol. 91, 695–705.

    Google Scholar 

  • SMALL, J. V., RINNERTHALER, G. & HINSSEN, H. (1981) Organization of actin meshworks in cultured cells. The leading edge.Cold Spring Harb. Symp. quant. Biol. 46, 599–611.

    Google Scholar 

  • TILNEY, L. G., BONDER, E. M. & DeROSIER, D. J. (1981) Actin filaments elongate from their membrane-associated ends.J. Cell Biol. 90, 485–94.

    Google Scholar 

  • VASILIEV, J. M., GELFAND, I. M., DOMNINA, L. V., DORFMAN, N. A. & PLETYUSHKINA, O. Y. (1976) Active cell edge and movements of concanavalin A receptors of the surface of epithelial and fibroblastic cells.Proc. natn. Acad. Sci. 73, 4085–9.

    Google Scholar 

  • WANG, E. & GOLDBERG, A. R. (1976) Changes in microfilament organization and surface topography upon transformation of chick embryo fibroblasts with Rous sarcoma virus.Proc. natn. Acad. Sci. 73, 4065–9.

    Google Scholar 

  • WESTERMARK, B., HELDIN, C.-H., EK, B., JOHNSSON, A., MELLSTRÖM, K., NISTÉR, M. & WASTESON, Å. (1983)Biochemistry and Biology of Platelet-Derived Growth Factor (edited by GUROFF, G.). New York, Chichester: Wiley (in press).

    Google Scholar 

  • WESTERMARK, B. & WASTESON, Å. (1976) A platelet factor stimulating human normal glial cells.Expl Cell Res. 98, 170–4.

    Google Scholar 

  • WILKINS, J. A. & LIN, S. (1982) High-affinity interaction of vinculin with actin filaments in vitro.Cell 28, 83–90.

    Google Scholar 

  • WILLINGHAM, M. C. & PASTAN, I. H. (1982) Transit of epidermal growth factor through coated pits of the Golgi system.J. Cell Biol. 94, 207–12.

    Google Scholar 

  • WITTE, L. D., KAPLAN, K. L., NOSSEL, H. L., LAGES, B. A., WEISS, H. J. & GOODMAN, D. S. (1978) Studies of the release from human platelets of the growth factor for cultured human arterial smooth muscle cells.Circ. Res. 42, 402–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mellström, K., Höglund, AS., Nistér, M. et al. The effect of platelet-derived growth factor on morphology and motility of human glial cells. J Muscle Res Cell Motil 4, 589–609 (1983). https://doi.org/10.1007/BF00712117

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00712117

Keywords