Skip to main content

Advertisement

On areas of transition between entorhinal allocortex and temporal isocortex in the human brain. Normal morphology and lamina-specific pathology in Alzheimer's disease

  • Original Works
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

The allocortical entorhinal region does not gradually transform into the temporal isocortex. Instead, there is an extended stretch of “transentorhinal” cortex with interdigitation of allocortical and isocortical laminae. The main feature of this transition zone is that the superficial layer of large multipolar nerve cells (Pre-α) of the entorhinal region gradually sweeps downward and follows an oblique course through the outer layers. During this course the starshaped nerve cells of Pre-α are transformed into pyramidal cells.

The layer Pre-α projection cells are particularly prone to the development of neurofibrillary changes of the Alzheimer type. In cases of presenile and senile dementia almost all of the layer Pre-α projection neurons are changed pathologically. The isocortical pyramidal cells of layers II to IV are far less inclined to develop neurofibrillary changes. In the transentorhinal cortex, the tangle-bearing neurons follow an oblique course through the superficial laminae and are finally located between the isocortical layers III and IV, findings that confirm the assumption that these neurons are constituents of the allocortical layer Pre-α.

Layer-specific pathology of the profound stratum as well confirms the transentorhinal region as being formed by interdigitating allocortical and isocortical layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amaral DG, Insausti R, Cowan WM (1983) Evidence for a direct projection from the superior temporal gyrus to the entorhinal cortex in the monkey. Brain Res 275:263–277

    Google Scholar 

  • Braak H (1972) Zur Pigmentarchitektonik der Großhirnrinde des Menschen. I. Regio entorhinalis. Z Zellforsch 127:407–438

    Google Scholar 

  • Braak H (1978) On the pigment architectonics of the human telencephalic cortex. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. Raven Press, New York, pp 137–157

    Google Scholar 

  • Braak H (1980) Architectonics of the human telencephalic cortex. In: Braitenberg V, Barlow HB, Bizzi E, Florey E, Grüsser OJ, van der Loos H (eds) Studies of brain function, vol 4. Springer, Berlin Heidelberg New York, pp 1–147

    Google Scholar 

  • Braak H, Braak E, Strenge H (1976) Gehören die Inselneurone der Regio entorhinalis zur Klasse der Pyramiden oder der Sternzellen? Z Mikrosk Anat Forsch 90:1017–1031

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde. Barth, Leipzig

    Google Scholar 

  • Brodmann K (1914) Physiologie des Gehirns. In: von Bruns P (Hrsg) Neue Deutsche Chirurgie, Bd 11. Enke, Stuttgart, S 85–426

    Google Scholar 

  • Economo C von, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Wien Berlin

    Google Scholar 

  • Feldman ML (1984) Morphology of the neocortical pyramidal neuron. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Plenum Press, New York, pp 123–200

    Google Scholar 

  • Gallyas F (1971) Silver staining of Alzheimer's neurofibrillary changes by means of physical development. Acta Morphol Acad Sci Hung 19:1–8

    Google Scholar 

  • Groenewegen HJ, Room P, Witter MP, Lohman AHM (1982) Cortical afferents of the nucleus accumbens in the cat, studied with anterograde and retrograde transport techniques. Neuroscience 7:977–995

    Google Scholar 

  • Hirano A, Zimmerman HM (1962) Alzheimer's neurofibrillary changes. A topographic study. Arch Neurol 7:227–242

    Google Scholar 

  • Hjorth-Simonsen A (1972) Projection of the lateral part of the entorhinal area to the hippocampus and fascia dentata. J Comp Neurol 146:219–231

    Google Scholar 

  • Hjorth-Simonsen A, Jeune B (1972) Orgin and termination of the hippocampal perforant path in the rat studied by silver impregnation. J Comp Neurol 144:215–232

    Google Scholar 

  • Hoesen GW van (1982) The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends Neurosci 5:345–350

    Google Scholar 

  • Hoesen GW van, Pandya DN (1973) Afferent and efferent connections of the perirhinal cortex (area 35) in the rhesus monkey. Anat Rec 175:460–461

    Google Scholar 

  • Hoesen GW van, Pandya DN (1975a) Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95: 1–24

    Google Scholar 

  • Hoesen GW van, Pandya DN (1975b) Some connections of the entorhinal (area 28) and perirhinal (area 35) of the rhesus monkey. III. Efferent connections. Brain Res 95:39–59

    Google Scholar 

  • Hoesen GW van, Pandya DN, Butters N (1972) Cortical afferents to the entorhinal cortex of the rhesus monkey. Science 175:1471–1473

    Google Scholar 

  • Hoesen GW van, Pandya DN, Butters N (1975) Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents. Brain Res 95:25–38

    Google Scholar 

  • Hooper WM, Vogel FS (1976) The limbic system in Alzheimer's disease. A neuropathologic investigation. Am J Pathol 85:1–20

    Google Scholar 

  • Hyman BT, Hoesen GW van, Damasio AR, Barnes CL (1984) Alzheimer's disease: Cell-specific pathology isolates the hippocampal formation. Science 225:1168–1170

    Google Scholar 

  • Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793–820

    Google Scholar 

  • Kemper TL (1978) Senile dementia: A focal disease in the temporal lobe. In: Nandy E (ed Senile dementia: A biomedical approach. Elsevier, Amsterdam, pp 105–113

    Google Scholar 

  • Kosel KC, Hoesen GW van, Rosene DL (1982) Nonhippocampal cortical projections from the entorhinal cortex in the rat and rhesus monkey. Brain Res 244:201–213

    Google Scholar 

  • Leichnetz GR, Astruc J (1976) The squirrel monkey entorhinal cortex: Architecture and medial frontal afferents. Brain Res Bull 1:351–358

    Google Scholar 

  • Lorente de Nó R (1933) Studies on the structure of the cerebral cortex. I. The area entorhinalis. J Psychol Neurol 45:381–438

    Google Scholar 

  • Lorente de Nó R (1934) Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. J Psychol Neurol 46:113–177

    Google Scholar 

  • Mesulam MM (1979) Tracing neural connections of human brain with selective silver impregnation. Observations on geniculocalcarine, spinothalamic, and entorhinal pathways. Arch Neurol 36:814–818

    Google Scholar 

  • Ramón y Cajal S (1911) Histologie du système nerveux de I'homme et des vertébrés. Maloine, Paris (Reprinted 1955: Consejo superior de investigaciones científicas, Madrid)

    Google Scholar 

  • Rose M (1927a) Der Allocortex bei Tier und Mensch. I. Teil. J Psychol Neurol 34:1–111

    Google Scholar 

  • Rose M (1927b) Die sog. Riechrinde beim Menschen und beim Affen. II. Teil des “Allocortex bei Tier und Mensch”. J Psychol Neurol 34:261–401

    Google Scholar 

  • Rose M (1935) Cytoarchitektonik und Myeloarchitektonik der Großhirnrinde. In: Bumke O, Förster O (Hrsg) Handbuch der Neurologie, Bd 1. Springer, Berlin, S 588–778

    Google Scholar 

  • Russchen FT (1982) Amygdalopetal projections in the cat. I. Cortical afferent connections. A study with retrograde and anterograde tracing techniques. J Comp Neurol 206: 159–179

    Google Scholar 

  • Schroeder K (1939) Eine weitere Verbesserung meiner Markscheidenmethode am Gefrierschnitt. Z Gesamte Neurol 166:588–593

    Google Scholar 

  • Schwartz SP, Coleman PD (1981) Neurons of origin of the perforant path. Exp Neurol 74:305–312

    Google Scholar 

  • Segal M, Landis S (1974) Afferents to the hippocampus of the rat studied with the method of retrograde transport of horseradish peroxidase. Brain Res 78:1–15

    Google Scholar 

  • Seltzer B, Pandya DN (1974) Polysensory cortical projections to the parahippocampal gyrus in the rhesus monkey. Anat Rec 178:460–461

    Google Scholar 

  • Sgonina K (1937) Zur vergleichenden Anatomie der Entorhinal-und Präsubikularregion. J Psychol Neurol 48:56–163

    Google Scholar 

  • Stephan H (1975) Allocortex. In: Bargmann W (Hrsg) Handbuch der mikroskopischen Anatomie des Menschen, Bd 4/9. Springer, Berlin Heidelberg New York, S 1–998

    Google Scholar 

  • Steward O (1976) Iopographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. J Comp Neurol 167:285–314

    Google Scholar 

  • Steward O, Scoville SA (1976) Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol 169:347–370

    Google Scholar 

  • Witter MP, Groenewegen HJ (1984) Laminar origin and septotemporal distribution of entorhinal and perirhinal projections to the hippocampus in the cat. J Comp Neurol 224:371–385

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants from the Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braak, H., Braak, E. On areas of transition between entorhinal allocortex and temporal isocortex in the human brain. Normal morphology and lamina-specific pathology in Alzheimer's disease. Acta Neuropathol 68, 325–332 (1985). https://doi.org/10.1007/BF00690836

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00690836

Key words