Summary
The allocortical entorhinal region does not gradually transform into the temporal isocortex. Instead, there is an extended stretch of “transentorhinal” cortex with interdigitation of allocortical and isocortical laminae. The main feature of this transition zone is that the superficial layer of large multipolar nerve cells (Pre-α) of the entorhinal region gradually sweeps downward and follows an oblique course through the outer layers. During this course the starshaped nerve cells of Pre-α are transformed into pyramidal cells.
The layer Pre-α projection cells are particularly prone to the development of neurofibrillary changes of the Alzheimer type. In cases of presenile and senile dementia almost all of the layer Pre-α projection neurons are changed pathologically. The isocortical pyramidal cells of layers II to IV are far less inclined to develop neurofibrillary changes. In the transentorhinal cortex, the tangle-bearing neurons follow an oblique course through the superficial laminae and are finally located between the isocortical layers III and IV, findings that confirm the assumption that these neurons are constituents of the allocortical layer Pre-α.
Layer-specific pathology of the profound stratum as well confirms the transentorhinal region as being formed by interdigitating allocortical and isocortical layers.
Similar content being viewed by others
References
Amaral DG, Insausti R, Cowan WM (1983) Evidence for a direct projection from the superior temporal gyrus to the entorhinal cortex in the monkey. Brain Res 275:263–277
Braak H (1972) Zur Pigmentarchitektonik der Großhirnrinde des Menschen. I. Regio entorhinalis. Z Zellforsch 127:407–438
Braak H (1978) On the pigment architectonics of the human telencephalic cortex. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. Raven Press, New York, pp 137–157
Braak H (1980) Architectonics of the human telencephalic cortex. In: Braitenberg V, Barlow HB, Bizzi E, Florey E, Grüsser OJ, van der Loos H (eds) Studies of brain function, vol 4. Springer, Berlin Heidelberg New York, pp 1–147
Braak H, Braak E, Strenge H (1976) Gehören die Inselneurone der Regio entorhinalis zur Klasse der Pyramiden oder der Sternzellen? Z Mikrosk Anat Forsch 90:1017–1031
Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde. Barth, Leipzig
Brodmann K (1914) Physiologie des Gehirns. In: von Bruns P (Hrsg) Neue Deutsche Chirurgie, Bd 11. Enke, Stuttgart, S 85–426
Economo C von, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Wien Berlin
Feldman ML (1984) Morphology of the neocortical pyramidal neuron. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Plenum Press, New York, pp 123–200
Gallyas F (1971) Silver staining of Alzheimer's neurofibrillary changes by means of physical development. Acta Morphol Acad Sci Hung 19:1–8
Groenewegen HJ, Room P, Witter MP, Lohman AHM (1982) Cortical afferents of the nucleus accumbens in the cat, studied with anterograde and retrograde transport techniques. Neuroscience 7:977–995
Hirano A, Zimmerman HM (1962) Alzheimer's neurofibrillary changes. A topographic study. Arch Neurol 7:227–242
Hjorth-Simonsen A (1972) Projection of the lateral part of the entorhinal area to the hippocampus and fascia dentata. J Comp Neurol 146:219–231
Hjorth-Simonsen A, Jeune B (1972) Orgin and termination of the hippocampal perforant path in the rat studied by silver impregnation. J Comp Neurol 144:215–232
Hoesen GW van (1982) The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends Neurosci 5:345–350
Hoesen GW van, Pandya DN (1973) Afferent and efferent connections of the perirhinal cortex (area 35) in the rhesus monkey. Anat Rec 175:460–461
Hoesen GW van, Pandya DN (1975a) Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95: 1–24
Hoesen GW van, Pandya DN (1975b) Some connections of the entorhinal (area 28) and perirhinal (area 35) of the rhesus monkey. III. Efferent connections. Brain Res 95:39–59
Hoesen GW van, Pandya DN, Butters N (1972) Cortical afferents to the entorhinal cortex of the rhesus monkey. Science 175:1471–1473
Hoesen GW van, Pandya DN, Butters N (1975) Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents. Brain Res 95:25–38
Hooper WM, Vogel FS (1976) The limbic system in Alzheimer's disease. A neuropathologic investigation. Am J Pathol 85:1–20
Hyman BT, Hoesen GW van, Damasio AR, Barnes CL (1984) Alzheimer's disease: Cell-specific pathology isolates the hippocampal formation. Science 225:1168–1170
Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793–820
Kemper TL (1978) Senile dementia: A focal disease in the temporal lobe. In: Nandy E (ed Senile dementia: A biomedical approach. Elsevier, Amsterdam, pp 105–113
Kosel KC, Hoesen GW van, Rosene DL (1982) Nonhippocampal cortical projections from the entorhinal cortex in the rat and rhesus monkey. Brain Res 244:201–213
Leichnetz GR, Astruc J (1976) The squirrel monkey entorhinal cortex: Architecture and medial frontal afferents. Brain Res Bull 1:351–358
Lorente de Nó R (1933) Studies on the structure of the cerebral cortex. I. The area entorhinalis. J Psychol Neurol 45:381–438
Lorente de Nó R (1934) Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. J Psychol Neurol 46:113–177
Mesulam MM (1979) Tracing neural connections of human brain with selective silver impregnation. Observations on geniculocalcarine, spinothalamic, and entorhinal pathways. Arch Neurol 36:814–818
Ramón y Cajal S (1911) Histologie du système nerveux de I'homme et des vertébrés. Maloine, Paris (Reprinted 1955: Consejo superior de investigaciones científicas, Madrid)
Rose M (1927a) Der Allocortex bei Tier und Mensch. I. Teil. J Psychol Neurol 34:1–111
Rose M (1927b) Die sog. Riechrinde beim Menschen und beim Affen. II. Teil des “Allocortex bei Tier und Mensch”. J Psychol Neurol 34:261–401
Rose M (1935) Cytoarchitektonik und Myeloarchitektonik der Großhirnrinde. In: Bumke O, Förster O (Hrsg) Handbuch der Neurologie, Bd 1. Springer, Berlin, S 588–778
Russchen FT (1982) Amygdalopetal projections in the cat. I. Cortical afferent connections. A study with retrograde and anterograde tracing techniques. J Comp Neurol 206: 159–179
Schroeder K (1939) Eine weitere Verbesserung meiner Markscheidenmethode am Gefrierschnitt. Z Gesamte Neurol 166:588–593
Schwartz SP, Coleman PD (1981) Neurons of origin of the perforant path. Exp Neurol 74:305–312
Segal M, Landis S (1974) Afferents to the hippocampus of the rat studied with the method of retrograde transport of horseradish peroxidase. Brain Res 78:1–15
Seltzer B, Pandya DN (1974) Polysensory cortical projections to the parahippocampal gyrus in the rhesus monkey. Anat Rec 178:460–461
Sgonina K (1937) Zur vergleichenden Anatomie der Entorhinal-und Präsubikularregion. J Psychol Neurol 48:56–163
Stephan H (1975) Allocortex. In: Bargmann W (Hrsg) Handbuch der mikroskopischen Anatomie des Menschen, Bd 4/9. Springer, Berlin Heidelberg New York, S 1–998
Steward O (1976) Iopographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. J Comp Neurol 167:285–314
Steward O, Scoville SA (1976) Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol 169:347–370
Witter MP, Groenewegen HJ (1984) Laminar origin and septotemporal distribution of entorhinal and perirhinal projections to the hippocampus in the cat. J Comp Neurol 224:371–385
Author information
Authors and Affiliations
Additional information
Supported by grants from the Deutsche Forschungsgemeinschaft
Rights and permissions
About this article
Cite this article
Braak, H., Braak, E. On areas of transition between entorhinal allocortex and temporal isocortex in the human brain. Normal morphology and lamina-specific pathology in Alzheimer's disease. Acta Neuropathol 68, 325–332 (1985). https://doi.org/10.1007/BF00690836
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00690836