Skip to main content

Quantitation and karyometry of cerebral neuroglia and endothelial cells in liver cirrhosis and in the hepatosplenic schistosomiasis mansoni

  • Regular Papers
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

A morphological, karyometric, and quantitative study of cerebral neuroglia and endothelial cells of blood capillaries was done in cirrhotic and in hepatosplenic schistosomotic human autopsied cases. Cluster analysis applied to them revealed three subgroups (cirrhosis and schistosomiasis polar groups and one intermediate). The comparison of these three groups with a control revealed increased numbers of astrocytes, oligodendrocytes and endothelial cells, but no nuclear enlargement in the schistosomiasis group; the cirrhosis group exhibited a pronounced nuclear enlargement of both astrocyte and oligodendrocytes but no increase in cell numbers. The intermediate group, which encompasses the majority of pathological cases, is heterogeneous but on average behave as the cirrhosis group in that nuclear enlargement, but no increase in cell numbers, was noted. Such changes could represent a response of the nervous system to the metabolic disturbances present in hepatic and/or portal-systemic encephalopathy. There was a positive correlation between glial and endothelial cell numbers in cerebral cortex, suggesting a functional relationship between the glial cells and the capillary bed. This study points out the importance of clustering the cases, because the physiopathological status of individuals belonging to the same nosological condition can be different. Comparisons considering this aspect should be useful in understanding the progression of the pathological process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams RD, Foley JM (1953) The neurological disorder associated with liver disease. Proc Assoc Res Nerv Ment Dis 32:198–237

    Google Scholar 

  2. Bogliolo L (1981) Figado e vias biliares. In: Bogliolo L (ed) Patologia, 3rd edn. Guanabara Koogan, Rio de Janeiro, pp 658–743

    Google Scholar 

  3. Brown IA (1957) Liver-brain relationships. Charles C Thomas, Springfield, Ill, pp 1–198

    Google Scholar 

  4. Cavanagh JB (1974) Liver bypass and the glia. Res Publ Assoc Nerv Ment Dis 53:13–38

    Google Scholar 

  5. Cavanagh JB, Kyu MH (1969) Colchicine-like effect on astrocyte after portacaval shunt in rats. Lancet II:620–622

    Google Scholar 

  6. Cavanagh JB, Kyu MH (1971) Type II Alzheimer change experimentally produced in astrocytes in the rat. J Neurol Sci 12:63–75

    Google Scholar 

  7. Cavanagh JB, Kyu MH (1971) On the mechanism of type I Alzheimer abnormality in the nuclei of astrocytes. An essay in quantitative histology. J Neurol Sci 12:241–261

    Google Scholar 

  8. Diemer NH (1978) Glial and neuronal changes in experimental hepatic encephalopathy. A quantitative morphological investigation. Acta Neurol Scand [Suppl 71] 58:1–144

    Google Scholar 

  9. Diemer NH, Laursen H (1977) Glial cell reactions in rats with hyperammoniemia induced by urease or porto-caval anastomosis. Acta Neurol Scand 55:425–442

    Google Scholar 

  10. Diemer NH, Tonnesen K (1977) Glial changes in pigs with porto-caval anastomosis and temporary or total hepatic artery clamping. Acta Pathol Microbiol Scand [A] 85:721–730

    Google Scholar 

  11. Diemer NH, Klee J, Shröder H, Klinken L (1977) Glial and nerve cell changes in rats with porto-caval anastomosis. Acta Neuropathol (Berl) 39:59–68

    Google Scholar 

  12. Erbslöh F (1958) Das Zentralnervensystem bei Leberkrankheiten. In: Henke F, Lubarsch O, Rössle R (eds) Handbuch der speziellen pathologischen Anatomie und Histologie, vol 13, part 2. Springer, Berlin Heidelberg New York, pp 1645–1698

    Google Scholar 

  13. Floderus S (1944) Untersuchungen über den Bau der menschlichen Hypophyse mit besonderer Berücksichtigung der quantitativen mikromorphologischen Verhältnisse. Acta Pathol Microbiol Scand [Suppl] 53:1–276

    Google Scholar 

  14. Hagen A, Lahl R (1978) Beitrag zur atypischen Makroglia bei nichthepatogenen Erkrankungen. Zentralbl Allg Pathol 122:522–527

    Google Scholar 

  15. Kline DG, Crook JN, Nance FC (1971) Eck fistula encephalopathy: long-term studies in primates. Ann Surg 173:97–103

    Google Scholar 

  16. Lahl R (1967) Zur Häufigkeit astrozytärer Gliaveränderungen (“Leberglia”) bei hepatogenen Erkrankungen, insbesondere Leberzirrhosen, und ihre Abhängigkeit vom Funktionszustand des Organs. Zentralbl Allg Pathol 110:518–545

    Google Scholar 

  17. Lewis AJ (1976) Mechanisms of neurological disease, 1st edn. Little, Brown and Company, Boston, pp 25–53

    Google Scholar 

  18. Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195:1356–1358

    Google Scholar 

  19. Norenberg MD (1977) A light and electron microscopic study of experimental portal-systemic (ammonia) encephalopathy. Progression and reversal of the disorder. Lab Invest 36:618–627

    Google Scholar 

  20. Penfield W (1924) Oligodendroglia and its relation to classical neuroglia. Brain 47:430–452

    Google Scholar 

  21. Pilbeam CM, Anderson RM, Bhathal PS (1983) The brain in experimental portal-systemic encephalopathy. I. Morphological changes in three animal models. J Pathol 140:331–345

    Google Scholar 

  22. Pittella JEH (1981) Astrocytes of the cerebral cortex in hepatosplenic schistosomiasis mansoni and in liver cirrhosis. A morphological quantitative and karyometric study. Virchows Arch [A] 390:229–241

    Google Scholar 

  23. Polak M (1965) Morphological and functional characteristics of the central and peripheral neuroglia (light microscopical observations). Prog Brain Res 15:12–34

    Google Scholar 

  24. Schlote W (1959) Zur Gliaarchitektonik der menschlichen Grosshirnrinde im Nissl-Bild. Arch Psychiat Z Ges Neurol 199:573–595

    Google Scholar 

  25. Sholpo AE (1957) Results of measurement and true dimensions of various spherical histological structures. Arkh Patol 4:75 (cited by Diemer 1978)

    Google Scholar 

  26. Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, London, pp 1–373

    Google Scholar 

  27. Snedecor GW, Cochran WG (1980) Statistical methods, 7th edn. Iowa State University Press, Ames, pp 1–505

    Google Scholar 

  28. Tarnowska-Dziduszko E, Wald I (1971) Study on glial changes in hepato-lenticular degeneration. Pol Med J 10:743–749

    Google Scholar 

  29. Taylor P, Schoene WC, Reid WA Jr, Lichtenberg F (1979) Quantitative changes in astrocytes after portacaval shunting. Arch Pathol Lab Med 103:82–85

    Google Scholar 

  30. Victor M, Adams RD, Cole M (1965) The acquired (non-Wilsonian) type of chronic hepatocerebral degeneration. Medicine (Baltimore) 44:345–396

    Google Scholar 

  31. Zamora AJ, Cavanagh JB, Kyu MH (1973) Ultrastructural response of the astrocytes to portocaval anastomosis in the rat. J Neurol Sci 18:25–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Grants from FINEP (GBF) and from CNPq [nos. 407789/84 (RCG) and 30.2036/76 (JEHP)]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brasileiro-Filho, G., Guimaraes, R.C. & Pittella, J.E.H. Quantitation and karyometry of cerebral neuroglia and endothelial cells in liver cirrhosis and in the hepatosplenic schistosomiasis mansoni. Acta Neuropathol 77, 582–590 (1989). https://doi.org/10.1007/BF00687885

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00687885

Key words