Skip to main content

Mengo virus 3C proteinase: Recombinant expression, intergenus substrate cleavage and localizationin vivo

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Mengo virus 3C proteinase was cloned and expressed to high levels in a bacterial vector system. The protein was solubilized from inclusion bodies then purified to homogeneity (>95%) by ion exchange chromatography. The recombinant enzyme was proteolytically active in cell-free processing assays with a mengo capsid precursor substrate, L-P1-2A, correctly and proficiently cleaving it into L, 1AB, 1C, 1D and 2A protein products. Further analyses with synthetic peptide substrates encompassing the Mengo or rhinovirus-14 2C/3A cleavage sequences, showed the Mengo 3C could recognize and process specific glutamine-glycine sites within these peptides. The reactivity with the rhinovirus peptide was unexpected, because cross-reactivity between a picornavirus 3C enzyme and a protein substrate from different genus of this family has otherwise never been observed. In reciprocal reactions, a rhinovirus-14 3C preparation was unable to cleave the Mengo-derived synthetic peptide substrate. The recombinant Mengo 3C reactions were also characterized with regard to substrate Km, optimum pH and temperature. The protein was additionally used to raise monoclonal antibodies (mAbs) in mice, which in turn localized natural 3C, 3ABC, 3CD and P3 in immunoblots, immunoprecipitations and indirect immunofluorescence assays of Mengo-infected HeLa cells. The monoclonals showed cross-reactivity with 3C and 3C-containing precursors from encephalomyocarditis virus (EMCV), but did not react with 3C proteins from rhinovirus-14 or poliovirus-1M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GorbalenyaA.E., DochenkoA.P., BlinovV.M., and KooninE.V., FEBS Lett.243, 103–114, 1989.

    Google Scholar 

  2. BazanJ.F. and FletterickR.J., Proc Natl Acad Sci U.S.A.85, 7872–7876, 1988.

    Google Scholar 

  3. PalmenbergA.C. and RueckertR.R., J Virol41, 244–249, 1982.

    Google Scholar 

  4. RueckertR.R., PalmenbergA.C., and PallanschM.A. KochG. and RichterD. (eds.)Biosynthesis, modification and processing of cellular and viral polyproteins. Academic Press, New York, 1980, pp. 263–275.

    Google Scholar 

  5. LawsonT.G., SmithL.L., PalmenbergA.C., and ThachR.E., J Virol63, 5013–5022, 1989.

    Google Scholar 

  6. ParksG.D. and PalmenbergA.C., J Virol61, 3680–3687, 1987.

    Google Scholar 

  7. ParksG.D., BakerJ.C., and PalmenbergA.C., J Virol63, 1054–1058, 1989.

    Google Scholar 

  8. AllaireM., ChernaiaM.M., MalcolmB.A., and JamesM.N., Nature369, 72–76, 1994.

    Google Scholar 

  9. MatthewsD.A., SmithW.W., FerreR.A., CondonB., BudahaziG., SissonW., VillafrancaJ.E., JansonC.A., McElroyH.E., GribskovC.L., and WorlandS., Cell77, 761–771, 1994.

    Google Scholar 

  10. JiaX.Y., EhrenfeldE., and SummersD.F., J Virol65, 2595–2600, 1991.

    Google Scholar 

  11. Ypma-WongM.F., DewaltP.G., JohnsonV.H., LambJ.G., and SemlerB.L., Virology166, 265–270, 1988.

    Google Scholar 

  12. NicklinM.J.H., HarrisK.S., PallaiP.V., and WimmerE., J Virol62, 4586–4593, 1988.

    Google Scholar 

  13. HarrisK.S., ReddigariS.R., NicklinM.J.H., HammerleT., and WimmerE., J Virol66(12), 7481–7489, 1992.

    Google Scholar 

  14. PalmenbergA.C. and OsorioJ.E., Archives of Virology90, 67–77, 1994.

    Google Scholar 

  15. StudierF.W., RosenbergA.H., DunnJ.J., and DubendorffJ.W., Meth Enz185, 60–89, 1990.

    Google Scholar 

  16. DukeG.M., HoffmanM.A., and PalmenbergA.C., J Virol66, 1602–1609, 1992.

    Google Scholar 

  17. ParksG.D., DukeG.M., and PalmenbergA.C., J Virol60, 376–384, 1986.

    Google Scholar 

  18. ShihD.S., ShihC.T., ZimmernD., RueckertR.R., and KaesbergP., J Virol30, 472–480, 1979.

    Google Scholar 

  19. HarlowE. and LaneD.,Antibodies A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, 1988.

    Google Scholar 

  20. ClevelandD., FischerS., FirschnerM., and LaemmliU., J Biol Chem252, 1102–1106, 1977.

    Google Scholar 

  21. CampbellE.A. and JacksonR.J., J Virol45, 439–441, 1982.

    Google Scholar 

  22. JacksonR.J., Virology149, 114–127, 1986.

    Google Scholar 

  23. KorantB.D., BrzinJ., and TurkV., Biochem Biophys Res Commun127, 1072–1076, 1985.

    Google Scholar 

  24. JacksonR.J., SemlerB.L., and EhrenfeldE. (eds.)Molecular Aspects of Picornavirus Infection and Detection. American Society for Microbiology, Washington, DC, 1989, pp. 51–71.

    Google Scholar 

  25. MalcolmB.A., ChinS.M., JewellD.A., Stratton-ThomasJ.R., ThudiumK.B., RalstonR., and RosenbergS., Biochemistry31, 3358–3363, 1992.

    Google Scholar 

  26. WeidnerJ.R. and DunnB.M., Arch Biochem Biophys286, 402–408, 1991.

    Google Scholar 

  27. CordingleyM.G., CallahanP.L., SardanaV.V., GarskyV.M., and ColonnoR.J., J Biol Chem265, 9062–9065, 1990.

    Google Scholar 

  28. OrrD.C., LongA.C., KayJ., DunnB.M., and CameronJ.M., J Gen Virol70, 2931–2942, 1989.

    Google Scholar 

  29. KnottJ.A., OrrD.C., MontgomeryD.S., SullivanC.A., and WestonA., E. J Biochem182, 547–555, 1989.

    Google Scholar 

  30. LeongL.E.C., WalkerP.A., and PorterA.G., J Biol Chem268, 1–5, 1993.

    Google Scholar 

  31. CheahK-C., SankarS., and PorterA.G., Gene69, 265–274, 1988.

    Google Scholar 

  32. KayJ. and DunnB.M., Biochim Biophys Acta1048, 1–18, 1990.

    Google Scholar 

  33. BergerH.G., StraubO.C., AhlR., TesarM., and MarquardtO., Vaccine8, 213–216, 1990.

    Google Scholar 

  34. EhrenfeldE., BrownD., JiaX.Y., and SummersD.F., J Infect Dis171, 845–850, 1995.

    Google Scholar 

  35. DukeG.M., OsorioJ.E., and PalmenbergA.C., Nature343, 474–476, 1990.

    Google Scholar 

  36. HarrisK.S., XiangW., AlexanderL., PaulA.V., LaneW.S., and WimmerE., J Biol Chem269, 27004–27014, 1994.

    Google Scholar 

  37. PalmenbergA.C., Ann Rev Micro44, 603–623, 1990.

    Google Scholar 

  38. MartinA., EscriouN., ChaoS., GirardM., LemonS.M., and WychowskiC., Virology213, 213–222, 1995.

    Google Scholar 

  39. LawsonM.A. and SemlerB.L. RacanielloV.R. (ed.)Current Topics in Microbiology and Immunology, Volume 161. Springer Verlag, Berlin, Heidelberg, 1990, pp. 49–87.

    Google Scholar 

  40. PalmenbergA.C., ParksG.D., HallD.J., IngrahamR.H., SengT.W., and PallaiP.V., Virology190, 754–762, 1992.

    Google Scholar 

  41. RyanM.D., BelshamG.J., and KingA.M.Q., Virology173, 35–45, 1989.

    Google Scholar 

  42. DevereuxJ., HaeberliP., and SmithiesO., Nucleic Acids Res12, 387–395, 1984.

    Google Scholar 

  43. StadenR., Nucleic Acids Res4, 4037–4051, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, D.J., Palmenberg, A.C. Mengo virus 3C proteinase: Recombinant expression, intergenus substrate cleavage and localizationin vivo . Virus Genes 13, 99–110 (1996). https://doi.org/10.1007/BF00568903

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00568903

Key words