Skip to main content

A yeast Telomere Binding Activity binds to two related telomere sequence motifs and is indistinguishable from RAPT

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Telomere Binding Activity (TBA), an abundant protein from Saccharomyces cerevisiae, was identified by its ability to bind to telomeric poly(C1–3A) sequence motifs. The substrate specificity of TBA has been analyzed in order to determine whether the activity binds to a unique structure assumed by the irregularly repeating telomeric sequences or whether the activity recognizes and binds to subset of specific sequences found within the telomere repeat tracts. Deletion analysis and DNase I protection assays demonstrate that TBA binds specifically to two poly(C1–3A) sequences that differ by one nucleotide. The methylation of four guanine residues, located at identical relative positions within these two binding sequences, interferes with TBA binding to the substrates. A synthetic olignucleotide containing a single TBA binding site can function as a TBA binding substrate. The TBA binding site shares homology with the binding sites reported for the Repressor/Activator Protein 1 (RAP1), Translation Upshift Factor (TUF) and General Regulatory Factor (GRFI) transcription factors, and TBA binds directly to RAP1/TUF/GRFI substrate sequences. Yeast TBA preparations and the RAP1 gene product expressed in E. coli cells are both similarly sensitive to in vitro protease digestion. Affinity-purified TBA extracts include a protein indistinguishable from RAP1 in binding specificity, size, and antigenicity. The binding affinity of TBA for the two telomeric poly(C1–3A) binding sites is higher than its affinity for any of the other binding substrates used for its identification. In extracts of yeast spheroplasts prepared by incubation of yeast cells with Zymolyase, an altered, proteolyzed form, of TBA (TBA-S) is present. TBA-S has a faster mobility in gel retardation assays and SDS-PAGE gels, yet it retains the DNA binding properties of standard TBA preparations: it binds to RAP1/TUF/GRFI substrates with the same relative binding affinity and protects poly(C1–3A) tracts from DNase I digestion with a “footprint” identical to that of standard TBA preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abovich N, Rosbash M (1984) Mol Cell Biol 4:1871–1879

    Google Scholar 

  • Abraham J, Nasmyth KA, Strathern JN, Klar AJS, Hicks JB (1984) J MoL Biol 176:307–331

    Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current Protocols in Molecular Biology. John Wiley & Sons, New York

    Google Scholar 

  • Berman J, Tachibana CY, Tye B-K (1986) Proc Natl Acad Sci USA 83:3713–3717

    Google Scholar 

  • Berman J, Eisenberg S, Tye B-K (1987) Methods Enzymol 155:528–537

    Google Scholar 

  • Blackburn EH, Szostak JW (1984) Annu Rev Biochem 53:163–194

    Google Scholar 

  • Brand AH, Micklem G, Nasmyth K (1987) Cell 51:709–719

    Google Scholar 

  • Buchman AR, Kimmerly WJ, Rine J, Kornberg RD (1988a) Mol Cell Biol 8:210–225

    Google Scholar 

  • Buchman AR, Lue NF, Kornberg RD (1988b) Mol Cell Biol 8:5086–5099

    Google Scholar 

  • Butler G, McConnell DJ (1988) Curr Gen 14:405–412

    Google Scholar 

  • Button LL, Astell CR (1986) Mol Cell Biol 6:1352–1356

    Google Scholar 

  • Capieaux E, Goffeau A (1988) Yeast 4:S389

    Google Scholar 

  • Carson MJ, Hartwell L (1985) Cell 42:249–257

    Google Scholar 

  • Chambers A, Stanway C, Kingsman AJ, Kingsman SM (1988) Nucleic Acids Res 16:8245–8260

    Google Scholar 

  • Chan CSM, Tye B-K (1983) Cell 33:563–573

    Google Scholar 

  • Chan CSM (1985) Dissertation, Cornell University, Ithaca, New York

  • Diffley JFX, Stillman B (1988) Proc Natl Acad Sci USA 85:2120–2124

    Google Scholar 

  • Donovan DM, Pearson NJ (1986) Mol Cell Biol 6:2429–2435

    Google Scholar 

  • Dorn, Bollekens AJ, Staub A, Benoist C, Mathis D (1987) Cell 50:863–872

    Google Scholar 

  • Driever W, Nüsslein-Volhard C (1988) Cell 54:83–93

    Google Scholar 

  • Gershoni JM, Palace GE (1983) Anal Biochem 131:1–15

    Google Scholar 

  • Gottschling DE, Zakain VA (1988) Cell Bio 2:291–307

    Google Scholar 

  • Greider CW, Blackburn EH (1985) Cell 43:405–513

    Google Scholar 

  • Greider CW, Blackburn EH (1987) Cell 51:887–898

    Google Scholar 

  • Greider CW, Blackburn EH (1989) Nature 337:331–337

    Google Scholar 

  • Henderson E, Hardin CC, Walk SK, Tinoco Jr I, Blackburn EH (1987) Cell 51:899–908

    Google Scholar 

  • Herruer MH, Mager WH, Woudt LP, Nieuwint RTM, Wassenaar GM, Groeneveld P, Planta RJ (1987) Nucleic Acids Res 15:10133–10144

    Google Scholar 

  • Huet J, Sentenac A (1987) Proc Natl Acad Sci USA 84:3648–3652

    Google Scholar 

  • Huet J, Cottrelle P, Cool M, Vignais M-L, Thiele D, Marck C, Buhler J-M, Sentenac A, Fromageot P (1985) EMBO J 4:3539–3547

    Google Scholar 

  • Jackson SP, Tjian R (1988) Cell 55:125–133

    Google Scholar 

  • Kadonaga JT, Tjian R (1986) Proc Natl Acad Sci USA 83:5889–5893

    Google Scholar 

  • Kimmerly W, Buchman A, Kornberg R, Rine J (1988) EMBO J 7:2241–2253

    Google Scholar 

  • Kimmerly WJ, Rine J (1987) Mol Cell Biol 7:4225–4237

    Google Scholar 

  • Laemmli UK (1970) Nature 227:680–685

    Google Scholar 

  • Lue NF, Buchman AR, And Kornberg RD (1989) Proc Natl Acad Sci USA 86:486–490

    Google Scholar 

  • Lundblad V, and Szostak JW (1989) Cell 57:633–643

    Google Scholar 

  • Lustig AJ, Petes TD (1986) Proc Natl Acad Sci USA 83:1398–1402

    Google Scholar 

  • Machida M, Uemura H, Jigami Y, Tanaka H (1988) Yeast 4:S408

    Google Scholar 

  • Maniatis T, Fritsch E, Sambrook J (1982) Molecular cloning: a loboratory manual Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Maxam AM, Gilbert W (1980) Meth Enzymol 65:499–560

    Google Scholar 

  • McClintock B (1941) Genetics 26:234–282

    Google Scholar 

  • McClintock B (1942) Proc Natl Acad Sci USA 28:458–463

    Google Scholar 

  • Müller GM, Shapira M, Arnon R (1982) Proc Natl Acad Sci USA 79:569–573

    Google Scholar 

  • Murray AW, Claus TE, Szostak JW (1988) Mol Cell Biol 8:4642–4650

    Google Scholar 

  • Oliphant AR, Nussbaum AL, Struhl K (1986) Gene 44:177–183

    Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Proc Natl Acad Sci USA 78:6354–6358

    Google Scholar 

  • Pluta AF, Dani GM Spear BB, Zakian VA (1984) Proc Natl Acad Sci USA 81:1475–1479

    Google Scholar 

  • Raymondjean M, Cereghini S, Yaniv M (1988) Proc Natl Acad Sci USA 85:757–761

    Google Scholar 

  • Resnick MA, Martin P (1976) Mol Gen Genetics 143:119–129

    Google Scholar 

  • Rosenfeld PJ, Kelley TJ (1986) J Biol Chem 261:1398–1408

    Google Scholar 

  • Rotenberg MO, Woolford JL (1986) Mol Cell Biol 6:674–687

    Google Scholar 

  • Sanger F, Nicklen S, Carlson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Shampay J, Blackburn EH (1987) Proc Natl Acad Sci USA 85:534–538

    Google Scholar 

  • Shampay J, Szostak JW, Blackburn EH (1984) Nature 310:154–157

    Google Scholar 

  • Shore D, Nasmyth KA (1987) Cell 51:721–732

    Google Scholar 

  • Shore D, Stillman DJ, Brand AH, Nasmyth KA (1987) EMBO J 6:461–467

    Google Scholar 

  • Shuey DJ, Parker CS (1986) J Biol Chem 261:1934–1940

    Google Scholar 

  • Szostak JW, Blackburn EH (1982) Cell 29:245–255

    Google Scholar 

  • Vieira J, Messing J (1987) Methods Enzymol 153:3–11

    Google Scholar 

  • Vinson CR, LaMarco KL, Johnson PF, Landschulz WH, McKnight SL (1988) Genes Dev 2:801–806

    Google Scholar 

  • Walmsley RM, Chan CSM, Tye B-K, Petes TD (1984) Nature 10:157–160

    Google Scholar 

  • Walmsley RM, Szostak JW, Petes TD (1983) Nature 302:84–86

    Google Scholar 

  • Watson JD (1972) Nature 239:197–201

    Google Scholar 

  • Woudt LP, Mager WH, Nieuwint RTM, Wassenaar GM, van der Kuyl AC, Murre JJ, Hoekman MGM, Borckhoff PGM, Planta RJ (1987) Nucleic Acids Res 15:6037–6048

    Google Scholar 

  • Woudt LP, Smit AB, Mager WH, Planta RJ (1986) EMBO J 5:1037–1040

    Google Scholar 

  • Xiao H, Lis JT (1986) Mol Cell Biol 6:3200–3206

    Google Scholar 

  • Zahler AM, Prescott DM (1988) Nucleic Acids Res 16:6953–6972

    Google Scholar 

  • Zakian VA, Blanton HM (1988) Mol Cell Biol 8:2257–2260

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longtine, M.S., Wilson, N.M., Petracek, M.E. et al. A yeast Telomere Binding Activity binds to two related telomere sequence motifs and is indistinguishable from RAPT. Curr Genet 16, 225–239 (1989). https://doi.org/10.1007/BF00422108

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00422108

Key words