Summary
Telomere Binding Activity (TBA), an abundant protein from Saccharomyces cerevisiae, was identified by its ability to bind to telomeric poly(C1–3A) sequence motifs. The substrate specificity of TBA has been analyzed in order to determine whether the activity binds to a unique structure assumed by the irregularly repeating telomeric sequences or whether the activity recognizes and binds to subset of specific sequences found within the telomere repeat tracts. Deletion analysis and DNase I protection assays demonstrate that TBA binds specifically to two poly(C1–3A) sequences that differ by one nucleotide. The methylation of four guanine residues, located at identical relative positions within these two binding sequences, interferes with TBA binding to the substrates. A synthetic olignucleotide containing a single TBA binding site can function as a TBA binding substrate. The TBA binding site shares homology with the binding sites reported for the Repressor/Activator Protein 1 (RAP1), Translation Upshift Factor (TUF) and General Regulatory Factor (GRFI) transcription factors, and TBA binds directly to RAP1/TUF/GRFI substrate sequences. Yeast TBA preparations and the RAP1 gene product expressed in E. coli cells are both similarly sensitive to in vitro protease digestion. Affinity-purified TBA extracts include a protein indistinguishable from RAP1 in binding specificity, size, and antigenicity. The binding affinity of TBA for the two telomeric poly(C1–3A) binding sites is higher than its affinity for any of the other binding substrates used for its identification. In extracts of yeast spheroplasts prepared by incubation of yeast cells with Zymolyase, an altered, proteolyzed form, of TBA (TBA-S) is present. TBA-S has a faster mobility in gel retardation assays and SDS-PAGE gels, yet it retains the DNA binding properties of standard TBA preparations: it binds to RAP1/TUF/GRFI substrates with the same relative binding affinity and protects poly(C1–3A) tracts from DNase I digestion with a “footprint” identical to that of standard TBA preparations.
Similar content being viewed by others
References
Abovich N, Rosbash M (1984) Mol Cell Biol 4:1871–1879
Abraham J, Nasmyth KA, Strathern JN, Klar AJS, Hicks JB (1984) J MoL Biol 176:307–331
Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current Protocols in Molecular Biology. John Wiley & Sons, New York
Berman J, Tachibana CY, Tye B-K (1986) Proc Natl Acad Sci USA 83:3713–3717
Berman J, Eisenberg S, Tye B-K (1987) Methods Enzymol 155:528–537
Blackburn EH, Szostak JW (1984) Annu Rev Biochem 53:163–194
Brand AH, Micklem G, Nasmyth K (1987) Cell 51:709–719
Buchman AR, Kimmerly WJ, Rine J, Kornberg RD (1988a) Mol Cell Biol 8:210–225
Buchman AR, Lue NF, Kornberg RD (1988b) Mol Cell Biol 8:5086–5099
Butler G, McConnell DJ (1988) Curr Gen 14:405–412
Button LL, Astell CR (1986) Mol Cell Biol 6:1352–1356
Capieaux E, Goffeau A (1988) Yeast 4:S389
Carson MJ, Hartwell L (1985) Cell 42:249–257
Chambers A, Stanway C, Kingsman AJ, Kingsman SM (1988) Nucleic Acids Res 16:8245–8260
Chan CSM, Tye B-K (1983) Cell 33:563–573
Chan CSM (1985) Dissertation, Cornell University, Ithaca, New York
Diffley JFX, Stillman B (1988) Proc Natl Acad Sci USA 85:2120–2124
Donovan DM, Pearson NJ (1986) Mol Cell Biol 6:2429–2435
Dorn, Bollekens AJ, Staub A, Benoist C, Mathis D (1987) Cell 50:863–872
Driever W, Nüsslein-Volhard C (1988) Cell 54:83–93
Gershoni JM, Palace GE (1983) Anal Biochem 131:1–15
Gottschling DE, Zakain VA (1988) Cell Bio 2:291–307
Greider CW, Blackburn EH (1985) Cell 43:405–513
Greider CW, Blackburn EH (1987) Cell 51:887–898
Greider CW, Blackburn EH (1989) Nature 337:331–337
Henderson E, Hardin CC, Walk SK, Tinoco Jr I, Blackburn EH (1987) Cell 51:899–908
Herruer MH, Mager WH, Woudt LP, Nieuwint RTM, Wassenaar GM, Groeneveld P, Planta RJ (1987) Nucleic Acids Res 15:10133–10144
Huet J, Sentenac A (1987) Proc Natl Acad Sci USA 84:3648–3652
Huet J, Cottrelle P, Cool M, Vignais M-L, Thiele D, Marck C, Buhler J-M, Sentenac A, Fromageot P (1985) EMBO J 4:3539–3547
Jackson SP, Tjian R (1988) Cell 55:125–133
Kadonaga JT, Tjian R (1986) Proc Natl Acad Sci USA 83:5889–5893
Kimmerly W, Buchman A, Kornberg R, Rine J (1988) EMBO J 7:2241–2253
Kimmerly WJ, Rine J (1987) Mol Cell Biol 7:4225–4237
Laemmli UK (1970) Nature 227:680–685
Lue NF, Buchman AR, And Kornberg RD (1989) Proc Natl Acad Sci USA 86:486–490
Lundblad V, and Szostak JW (1989) Cell 57:633–643
Lustig AJ, Petes TD (1986) Proc Natl Acad Sci USA 83:1398–1402
Machida M, Uemura H, Jigami Y, Tanaka H (1988) Yeast 4:S408
Maniatis T, Fritsch E, Sambrook J (1982) Molecular cloning: a loboratory manual Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
Maxam AM, Gilbert W (1980) Meth Enzymol 65:499–560
McClintock B (1941) Genetics 26:234–282
McClintock B (1942) Proc Natl Acad Sci USA 28:458–463
Müller GM, Shapira M, Arnon R (1982) Proc Natl Acad Sci USA 79:569–573
Murray AW, Claus TE, Szostak JW (1988) Mol Cell Biol 8:4642–4650
Oliphant AR, Nussbaum AL, Struhl K (1986) Gene 44:177–183
Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Proc Natl Acad Sci USA 78:6354–6358
Pluta AF, Dani GM Spear BB, Zakian VA (1984) Proc Natl Acad Sci USA 81:1475–1479
Raymondjean M, Cereghini S, Yaniv M (1988) Proc Natl Acad Sci USA 85:757–761
Resnick MA, Martin P (1976) Mol Gen Genetics 143:119–129
Rosenfeld PJ, Kelley TJ (1986) J Biol Chem 261:1398–1408
Rotenberg MO, Woolford JL (1986) Mol Cell Biol 6:674–687
Sanger F, Nicklen S, Carlson AR (1977) Proc Natl Acad Sci USA 74:5463–5467
Shampay J, Blackburn EH (1987) Proc Natl Acad Sci USA 85:534–538
Shampay J, Szostak JW, Blackburn EH (1984) Nature 310:154–157
Shore D, Nasmyth KA (1987) Cell 51:721–732
Shore D, Stillman DJ, Brand AH, Nasmyth KA (1987) EMBO J 6:461–467
Shuey DJ, Parker CS (1986) J Biol Chem 261:1934–1940
Szostak JW, Blackburn EH (1982) Cell 29:245–255
Vieira J, Messing J (1987) Methods Enzymol 153:3–11
Vinson CR, LaMarco KL, Johnson PF, Landschulz WH, McKnight SL (1988) Genes Dev 2:801–806
Walmsley RM, Chan CSM, Tye B-K, Petes TD (1984) Nature 10:157–160
Walmsley RM, Szostak JW, Petes TD (1983) Nature 302:84–86
Watson JD (1972) Nature 239:197–201
Woudt LP, Mager WH, Nieuwint RTM, Wassenaar GM, van der Kuyl AC, Murre JJ, Hoekman MGM, Borckhoff PGM, Planta RJ (1987) Nucleic Acids Res 15:6037–6048
Woudt LP, Smit AB, Mager WH, Planta RJ (1986) EMBO J 5:1037–1040
Xiao H, Lis JT (1986) Mol Cell Biol 6:3200–3206
Zahler AM, Prescott DM (1988) Nucleic Acids Res 16:6953–6972
Zakian VA, Blanton HM (1988) Mol Cell Biol 8:2257–2260
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Longtine, M.S., Wilson, N.M., Petracek, M.E. et al. A yeast Telomere Binding Activity binds to two related telomere sequence motifs and is indistinguishable from RAPT. Curr Genet 16, 225–239 (1989). https://doi.org/10.1007/BF00422108
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00422108