Skip to main content
Log in

Biosynthesis of the peroxisomal dihydroxyacetone synthase from Hansenula polymorpha in Saccharomyces cerevisiae induces growth but not proliferation of peroxisomes

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The DAS gene of Hansenula polymorpha was expressed in Saccharomyces cerevisiae under the control of different promoters. The heterologously synthesized dihydroxyacetone synthase (DHAS), a peroxisomal enzyme in H. polymorpha, shows enzymatic activity in baker's yeast. The enzyme was imported into the peroxisomes of S. cerevisiae not only under the appropriate physiological conditions for peroxisome proliferation (oleic acid media), but also in glucose-grown cells where it induced the enlargement of the few peroxisomes present. This growth process was not accompanied by an increase in the number of microbodies, which suggests a separate control mechanism for peroxisomal proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bystrykh LV, Sokolov AP, Trotsenko JA (1981) FEBS Lett 132:324–328

    Google Scholar 

  • Carlson M, Botstein D (1982) Cell 28:145–154

    Google Scholar 

  • Cregg JM, Barringer KJ, Hessler AY, Madden KR (1985) Mol Cell Biol 5:3376–3385

    Google Scholar 

  • Cross HS, Ruis H (1978) Mol Gen Genet 166:37–43

    Google Scholar 

  • Distel B, Veenhuis M, Tabak HF (1987) EMBO J 6:3111–3116

    Google Scholar 

  • Distel B, van der Ley I, Veenhuis M, Tabak HF (1988) J Cell Biol 107:1669–1675

    Google Scholar 

  • Douma AC, Veenhuis M, de Koning W, Evers M, Harder W (1985) Arch Microbiol 143:237–243

    Google Scholar 

  • Ellis SB, Borst PF, Kontz PI, Waters AF, Harpold MM, Gingeras TR (1985) Mol Cell Biol 5:1111–1121

    Google Scholar 

  • Erhart E, Hollenberg CP (1983) J Bacteriol 156:625–635

    Google Scholar 

  • Goodman JM (1985) J Biol Chem 260:7108–7113

    Google Scholar 

  • Goodman JM, Scott CW, Donahue PN, Atherton JP (1984) J Biol Chem 259:8485–8493

    Google Scholar 

  • Gould SJ, Keller GA, Subramani S (1987) J Cell Biol 105:2923–2931

    Google Scholar 

  • Hollenberg CP (1979) In: Cumming DJ, Borst P, David IB, Weissman SM, Fox CF (eds), Extrachromosomal DNA, ICN-UCLA Symp on Molecular and Cellular Biology, vol 15. Academic Press, New York, pp 325–338

    Google Scholar 

  • Hörtner HG, Ammerer G, Hartter E, Hamilton B, Rytka J, Bilinski T, Ruis H (1982) Eur J Biochem 128:179–184

    Google Scholar 

  • Janowicz ZA, Eckart MR, Drewke C, Roggenkamp R, Hollenberg CP, Maat J, Ledeboer AM, Visser C, Verrips CT (1985) Nucleic Acids Res 13:3043–3062

    Google Scholar 

  • Kellermann E, Seeboth PG, Hollenberg CP (1986) Nucleic Acids Res 14:8963–8977

    Google Scholar 

  • Klebe RJ, Harris JV, Smart ZD, Douglas MG (1983) Gene 25:333–341

    Google Scholar 

  • Laemmli UK (1970) Nature 227:680–685

    Google Scholar 

  • Ledeboer AM, Edens L, Maat J, Visser C, Bos JW, Verrips CT, Janowicz Z, Eckart MR, Roggenkamp R, Hollenberg CP (1985) Nucleic Acids Res 13:3063–3082

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrooke J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Maxam AM, Gilbert W (1980) Methods Enzymol 65:499–560

    Google Scholar 

  • Roa M, Blobel G (1983) Proc Natl Acad Sci USA 80:6872–6876

    Google Scholar 

  • Roggenkamp R, Sahm H, Wagner F (1974) FEBS Lett 41:283–286

    Google Scholar 

  • Roggenkamp R, Janowicz Z, Stanikowski B, Hollenberg CP (1984) Mol Gen Genet 194:489–493

    Google Scholar 

  • Roggenkamp R, Hansen H, Eckart M, Janowicz Z, Hollenberg CP (1986) Mol Gen Genet 202:302–308

    Google Scholar 

  • Schmitt HD, Ciriacy M, Zimmermann F (1983) Mol Gen Genet 192:247–252

    Google Scholar 

  • Small GM, Szabo LG, Lazarow PB (1988) EMBO J 7:1167–1173

    Google Scholar 

  • Tolbert NE (1974) Methods Enzymol 31:734–748

    Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Proc Natl Acad Sci USA 76:4350–4354

    Google Scholar 

  • Veenhuis M, van Dijken JP, Pilon SAF, Harder W (1978) Arch Microbiol 117:153–163

    Google Scholar 

  • Veenhuis M, van Dijken JP, Harder W (1983) Adv Microb Physiol 24:1–82

    Google Scholar 

  • Veenhuis M, Mateblowski M, Kunau WH, Harder W (1987) Yeast 3:77–84

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gödecke, A., Veenhuis, M., Roggenkamp, R. et al. Biosynthesis of the peroxisomal dihydroxyacetone synthase from Hansenula polymorpha in Saccharomyces cerevisiae induces growth but not proliferation of peroxisomes. Curr Genet 16, 13–20 (1989). https://doi.org/10.1007/BF00411078

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00411078

Key words

Navigation