Skip to main content

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Anisotropic connectivity and cooperative phenomena as a basis for orientation sensitivity in the visual cortex

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A computer simulation model of the neural circuitry underlying orientation sensitivity in cortical neurons is examined. The model consists of a network of 3000 neurons divided into two functionally distinct cell types: excitatory (E-cells) and inhibitory (I-cells). We demonstrate that both orientation sensitivity and shape selectivity can be accounted for by making the following assumptions: 1) thalamic afferents to a sheet of cortical neurons are retionotopically organized; 2) thalamic afferents come from a single neuron, or at most a few neurons, in the lateral geniculate nucleus; 3) cortical activity is cooperative, i.e. largely dependent on intracortical connections, some of which have anisotropies along directions parallel to the pial surface. Anisotropies are specified only by the distribution of cells which are postsynaptic to a particular neuron, without specifying the axonal or dendritic contributions. In this paper, orientation sensitivity arises through cooperative interactions among neurons having anisotropic excitatory, and isotropic inhibitory connections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amari, S.: Characteristics of randomly connected threshold element networks and network systems. Proc. IEEE 59, 35–47 (1971)

    Google Scholar 

  • Amari, S., Arbib, M.: Competition and cooperation in neural nets. In: Systems neuroscience. Metzler, J., ed. New York Academic Press 1977

    Google Scholar 

  • Anninos, P.A., Beek, B., Csermely, T.J., Harth, E., Pertile, G.: Dynamics of neural structures. J. Theor. Biol. 26, 121–148 (1970)

    Google Scholar 

  • Blinkov, G.M., Glezer, I.I.: The human brain in figures and tables. New York: Plenum Press 1968

    Google Scholar 

  • Braitenberg V.: Thoughts on the cerebral cortex. J. Theor. Biol. 46, 421–447 (1974)

    Google Scholar 

  • Colonnier M.: The tangential organization of the visual cortex. J. Anat. 98, 327–344 (1964)

    Google Scholar 

  • Colonnier, M., Rossignol, S.: Heterogenity of the cerebral cortex. In: Basic mechanisms of the epilepsies. Jasper, H.H., Ward, A.A., eds. Boston: Little, Brown 1969

    Google Scholar 

  • Cragg, B.G.: The density of synapses and neurons in the motor and visual areas of the cerebral cortex. J. Anat. 101, 639–654 (1967)

    Google Scholar 

  • Creutzfeldt, O.D., Ito, M.: Functional synaptic organization of primary visual cortex neurons in the cat. Exp. Brain Res 6, 324–352 (1968)

    Google Scholar 

  • Creutzfeldt, O.D., Kuhnt, U., Benevento, L.A.: An intracellular analysis of visual cortical neurons to moving stimuli: responses in a cooperative neuronal network. Exp. Brain Res. 21, 251–274 (1974)

    Google Scholar 

  • Creutzfeldt, O.D., Garey, L.J., Kuroda, R., Wolff, J.: The distribution of degenerating axons after small lesions in the intact and isolated visual cortex of the cat. Exp. Brain Res. 27, 419–440 (1977)

    Google Scholar 

  • Daniel, P.M., Whitteridge, D.: The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. 159, 203–221 (1961)

    Google Scholar 

  • Fisken, R.A., Garey, L.J., Powell, T.P.S.: The intrinsic, association and comissural connections of area 17 of the visual cortex. Phil. Trans. B 272, 487–536 (1975)

    Google Scholar 

  • Garey, L.J.: Synaptic organization of afferent fibers and intrinsic circuits in the neocortex. Electroenceph. Clin. Neurophysiol. 2, pt. A 57–85 (1976)

    Google Scholar 

  • Gentile, A.N., Harth, E.: The alignment of serial sections by spatial filtering. Comput. Biomed. Res. 11, (1978) (in press)

  • Globus, A., Scheibel, A.B.: Synaptic loci on visual cortical neurons of the rabbit: the specific afferent radiation. Exp. Neurol. 18, 116–131 (1967)

    Google Scholar 

  • Grossberg, S.: Contour enhancement, short term memory, and constancies in reverberating neural networks. Stud. Appl. Math. 52, 213–257 (1973)

    Google Scholar 

  • Harth, E., Csermely, T.J., Beek, B., Lindsay, R.D.: Brain functions and neural dynamics. J. Theor. Biol. 26, 93–120 (1970)

    Google Scholar 

  • Harth, E., Lewis, N.S., Csermely, T.J.: The escape of Tritonia: dynamics of a neuro-muscular control mechanism. J. Theor. Biol. 55, 201–228 (1975)

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962)

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B 198, 1–59 (1977)

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N., Stryker, M.P.: Anatomical demonstration of orientation columns in macaque monkey. J. Comp. Neur. 177, 361–380 (1978)

    Google Scholar 

  • Jacobs, G.H.: Spontaneous activity in visual systems. Am. J. Optom. Physiol. Opt. 49, 905–921 (1972)

    Google Scholar 

  • Jones, E.G.: Varieties and distribution of non-pyramical cells in the somatic sensory cortex of the squirel monkey. J. Comp. Neurol. 160, 205–268 (1975)

    Google Scholar 

  • Lund, J.: Organization of neurons in the visual cortex, area 17, of the monkey (Maccaca mulatta). J. Comp. Neur. 147, 455–496 (1973)

    Google Scholar 

  • Marin-Padilla, M.: Three-dimensional reconstruction of the pericellular nests (baskets) of the motor (area 4) and visual (area 17) of the human cerebral cortex. A Golgi study. Z. Anat. Entwicklungsgesch. 144, 123–135 (1974)

    Google Scholar 

  • Marin-Padilla, M., Stibitz, G.R.: Three-dimensional reconstruction of the basket cell of the human motor cortex. Brain Res. 70, 511–514 (1974)

    Google Scholar 

  • McIlwain, J.T.: Large receptive fields and spatial transformations in the visual system. In: International review of physiology, neurophysiology. II, 10. Porter, R., ed. Baltimore, Md.: University Park Press 1976

    Google Scholar 

  • Nelson, J.I., Frost, B.J.: Orientation-selective inhibition from beyond the classic visual receptive field. Brain Res. 139, 359–365 (1978)

    Google Scholar 

  • Paldino, A.M., Harth, E.: Some quantitative results on Golgi impregnated axons in rat visual cortex using a computer assisted video digitizer. J. Comp. Neur. 176, 247–262 (1977)

    Google Scholar 

  • Schiller, P.H., Finlay, B.L., Volman, S.F.: Quantitative studies of single-cell properties in monkey striate cortex. V. Multivariate statistical analyses and models. J. Neurophysiol. 39, 1362–1374 (1976)

    Google Scholar 

  • Sholl, D.A.: The organization of the visual cortex in the cat. J. Anat. 89, 33–46 (1955)

    Google Scholar 

  • Skeen, L.C., Humphrey, A.L., Norton, T.T., Hall, W.C.: Deoxyglucose mapping of the orientation column system in the striate cortex of the tree shrew, Tupaia glis. Brain Res. 142, 538–545 (1978)

    Google Scholar 

  • Szentágothai, J.: Synaptology of the visual cortex. In: Handbook of sensory physiology, Vol. VII/3. Part B, pp. 269–324. Central processing of visual information. Jung, R., ed. Berlin, Heidelberg, New York: Springer 1973

    Google Scholar 

  • Szentágothai, J., Arbib, M.A.: Conceptual models of neural organization. Neurosciences Research Program Bulletin 12, No. 3. Cambridge: MIT Press 1974

    Google Scholar 

  • Szentágothai, J: The module concept in cerebral cortex architecture. Brain Res. 95, 475–496 (1975)

    Google Scholar 

  • Toyama, K., Matsunomi, K., Ohno, T., Tokashiki, S.: An intracellular study of neuronal organization in the visual cortex. Exp. Brain Res. 21, 45–66 (1974)

    Google Scholar 

  • Tusa, R.J., Palmer, L.A., Rosenquist, A.C.: The retinotopic organization of area 17 (striate cortex) in the cat. J. Comp. Neur. 177, 213–236 (1978)

    Google Scholar 

  • Wilson, H.R., Cowen, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972)

    Google Scholar 

  • Wilson, H.R., Cowen, J.S.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973)

    Google Scholar 

  • Wong, R., Harth, E.: Stationary states and transients in neural populations. J. Theor. Biol 40, 77–106 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finette, S., Harth, E. & Csermely, T.J. Anisotropic connectivity and cooperative phenomena as a basis for orientation sensitivity in the visual cortex. Biol. Cybernetics 30, 231–240 (1978). https://doi.org/10.1007/BF00361044

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00361044

Keywords