Abstract
A computer simulation model of the neural circuitry underlying orientation sensitivity in cortical neurons is examined. The model consists of a network of 3000 neurons divided into two functionally distinct cell types: excitatory (E-cells) and inhibitory (I-cells). We demonstrate that both orientation sensitivity and shape selectivity can be accounted for by making the following assumptions: 1) thalamic afferents to a sheet of cortical neurons are retionotopically organized; 2) thalamic afferents come from a single neuron, or at most a few neurons, in the lateral geniculate nucleus; 3) cortical activity is cooperative, i.e. largely dependent on intracortical connections, some of which have anisotropies along directions parallel to the pial surface. Anisotropies are specified only by the distribution of cells which are postsynaptic to a particular neuron, without specifying the axonal or dendritic contributions. In this paper, orientation sensitivity arises through cooperative interactions among neurons having anisotropic excitatory, and isotropic inhibitory connections.
Similar content being viewed by others
References
Amari, S.: Characteristics of randomly connected threshold element networks and network systems. Proc. IEEE 59, 35–47 (1971)
Amari, S., Arbib, M.: Competition and cooperation in neural nets. In: Systems neuroscience. Metzler, J., ed. New York Academic Press 1977
Anninos, P.A., Beek, B., Csermely, T.J., Harth, E., Pertile, G.: Dynamics of neural structures. J. Theor. Biol. 26, 121–148 (1970)
Blinkov, G.M., Glezer, I.I.: The human brain in figures and tables. New York: Plenum Press 1968
Braitenberg V.: Thoughts on the cerebral cortex. J. Theor. Biol. 46, 421–447 (1974)
Colonnier M.: The tangential organization of the visual cortex. J. Anat. 98, 327–344 (1964)
Colonnier, M., Rossignol, S.: Heterogenity of the cerebral cortex. In: Basic mechanisms of the epilepsies. Jasper, H.H., Ward, A.A., eds. Boston: Little, Brown 1969
Cragg, B.G.: The density of synapses and neurons in the motor and visual areas of the cerebral cortex. J. Anat. 101, 639–654 (1967)
Creutzfeldt, O.D., Ito, M.: Functional synaptic organization of primary visual cortex neurons in the cat. Exp. Brain Res 6, 324–352 (1968)
Creutzfeldt, O.D., Kuhnt, U., Benevento, L.A.: An intracellular analysis of visual cortical neurons to moving stimuli: responses in a cooperative neuronal network. Exp. Brain Res. 21, 251–274 (1974)
Creutzfeldt, O.D., Garey, L.J., Kuroda, R., Wolff, J.: The distribution of degenerating axons after small lesions in the intact and isolated visual cortex of the cat. Exp. Brain Res. 27, 419–440 (1977)
Daniel, P.M., Whitteridge, D.: The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. 159, 203–221 (1961)
Fisken, R.A., Garey, L.J., Powell, T.P.S.: The intrinsic, association and comissural connections of area 17 of the visual cortex. Phil. Trans. B 272, 487–536 (1975)
Garey, L.J.: Synaptic organization of afferent fibers and intrinsic circuits in the neocortex. Electroenceph. Clin. Neurophysiol. 2, pt. A 57–85 (1976)
Gentile, A.N., Harth, E.: The alignment of serial sections by spatial filtering. Comput. Biomed. Res. 11, (1978) (in press)
Globus, A., Scheibel, A.B.: Synaptic loci on visual cortical neurons of the rabbit: the specific afferent radiation. Exp. Neurol. 18, 116–131 (1967)
Grossberg, S.: Contour enhancement, short term memory, and constancies in reverberating neural networks. Stud. Appl. Math. 52, 213–257 (1973)
Harth, E., Csermely, T.J., Beek, B., Lindsay, R.D.: Brain functions and neural dynamics. J. Theor. Biol. 26, 93–120 (1970)
Harth, E., Lewis, N.S., Csermely, T.J.: The escape of Tritonia: dynamics of a neuro-muscular control mechanism. J. Theor. Biol. 55, 201–228 (1975)
Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962)
Hubel, D.H., Wiesel, T.N.: Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B 198, 1–59 (1977)
Hubel, D.H., Wiesel, T.N., Stryker, M.P.: Anatomical demonstration of orientation columns in macaque monkey. J. Comp. Neur. 177, 361–380 (1978)
Jacobs, G.H.: Spontaneous activity in visual systems. Am. J. Optom. Physiol. Opt. 49, 905–921 (1972)
Jones, E.G.: Varieties and distribution of non-pyramical cells in the somatic sensory cortex of the squirel monkey. J. Comp. Neurol. 160, 205–268 (1975)
Lund, J.: Organization of neurons in the visual cortex, area 17, of the monkey (Maccaca mulatta). J. Comp. Neur. 147, 455–496 (1973)
Marin-Padilla, M.: Three-dimensional reconstruction of the pericellular nests (baskets) of the motor (area 4) and visual (area 17) of the human cerebral cortex. A Golgi study. Z. Anat. Entwicklungsgesch. 144, 123–135 (1974)
Marin-Padilla, M., Stibitz, G.R.: Three-dimensional reconstruction of the basket cell of the human motor cortex. Brain Res. 70, 511–514 (1974)
McIlwain, J.T.: Large receptive fields and spatial transformations in the visual system. In: International review of physiology, neurophysiology. II, 10. Porter, R., ed. Baltimore, Md.: University Park Press 1976
Nelson, J.I., Frost, B.J.: Orientation-selective inhibition from beyond the classic visual receptive field. Brain Res. 139, 359–365 (1978)
Paldino, A.M., Harth, E.: Some quantitative results on Golgi impregnated axons in rat visual cortex using a computer assisted video digitizer. J. Comp. Neur. 176, 247–262 (1977)
Schiller, P.H., Finlay, B.L., Volman, S.F.: Quantitative studies of single-cell properties in monkey striate cortex. V. Multivariate statistical analyses and models. J. Neurophysiol. 39, 1362–1374 (1976)
Sholl, D.A.: The organization of the visual cortex in the cat. J. Anat. 89, 33–46 (1955)
Skeen, L.C., Humphrey, A.L., Norton, T.T., Hall, W.C.: Deoxyglucose mapping of the orientation column system in the striate cortex of the tree shrew, Tupaia glis. Brain Res. 142, 538–545 (1978)
Szentágothai, J.: Synaptology of the visual cortex. In: Handbook of sensory physiology, Vol. VII/3. Part B, pp. 269–324. Central processing of visual information. Jung, R., ed. Berlin, Heidelberg, New York: Springer 1973
Szentágothai, J., Arbib, M.A.: Conceptual models of neural organization. Neurosciences Research Program Bulletin 12, No. 3. Cambridge: MIT Press 1974
Szentágothai, J: The module concept in cerebral cortex architecture. Brain Res. 95, 475–496 (1975)
Toyama, K., Matsunomi, K., Ohno, T., Tokashiki, S.: An intracellular study of neuronal organization in the visual cortex. Exp. Brain Res. 21, 45–66 (1974)
Tusa, R.J., Palmer, L.A., Rosenquist, A.C.: The retinotopic organization of area 17 (striate cortex) in the cat. J. Comp. Neur. 177, 213–236 (1978)
Wilson, H.R., Cowen, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972)
Wilson, H.R., Cowen, J.S.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973)
Wong, R., Harth, E.: Stationary states and transients in neural populations. J. Theor. Biol 40, 77–106 (1973)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Finette, S., Harth, E. & Csermely, T.J. Anisotropic connectivity and cooperative phenomena as a basis for orientation sensitivity in the visual cortex. Biol. Cybernetics 30, 231–240 (1978). https://doi.org/10.1007/BF00361044
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00361044