Summary
5S RNA from B. stearothermophilus and E. coli was reacted with NaIO4 and aniline to remove their 3′ terminal nucleoside. These modified 5S RNA molecules were then incorporated in B. stearothermophilus 50 S ribosomal subunits and tested for biological activities. 50 S ribosomes containing the modified 5S RNAs exhibited full activity and we therefore conclude, that the 3′ terminus of 5S RNA does not play an active role in protein synthesis.
Similar content being viewed by others
References
Boedtker, H., Kelling, D. G.: The ordered structure of 5S RNA. Biochem. biophys. Res. Commun. 29, 758–766 (1967).
Brownlee, G. G., Sanger, F., Barrell, B. G.: Nucleotide sequence of 5S-ribosomal RNA from Escherichia coli. Nature (Lond.) 215, 135–136 (1967).
Cantor, C. R.: The extent of base pairing in 5S ribosomal RNA. Proc. nat. Acad. Sci. (Wash.) 59, 478–483 (1968).
Cramer, F., Erdmann, V. A.: Amount of adenine and uracil base pairs in E. coli: 23S, 16S and 5S ribosomal RNA. Nature (Lond.) 218, 92–93 (1968).
—, Haar, F. v. d., Schlimme, E.: Über das Aminoacylierungsverhalten chemisch modifizierter phenylalaninspezifischer Transfer-Ribonucleinsäure aus Hefe: (1) Glykolspaltung und Reduktion zum Diol an der 3′-terminalen Ribose. FEBS Letters 2, 136–139 (1968).
Erdmann, V. A., Fahnestock, S., Higo, K., Nomura, M.: Role of 5S RNA in the functions of 50S ribosomal subunits. Proc. nat. Acad. Sci. (Wash.) 68, in press (1971).
Forget, B. G., Weissmann, S. M.: Nucleotide sequence of KB cell 5S RNA. Science 158, 1695–1699 (1967).
Jordan, B. R.: Studies on 5S RNA conformation by partial ribonuclease hydrolysis. J. molec. Biol. 55, 423–439 (1971).
Kurland, C. G.: Molecular characterization of ribonucleic acid from Escherichia coli ribosomes. J. molec. Biol. 2, 83–91 (1960).
Lee, J. C., Ingram, V. M.: Reaction of 5S RNA with a radioactive carbodiimide. J. molec. Biol. 41, 431–441 (1969).
Lewis, J. B., Doty, P.: Derivation of the secondary structure of 5S RNA from its binding of complementary oligonucleotides. Nature (Lond.) 225, 510–512 (1970).
Nirenberg, M. W., Matthaei, J. H.: The dependence of cell-free protein synthesis in E. coli upon naturally occuring or synthetic polyribonucleotides. Proc. nat. Acad. Sci. (Wash.) 47, 1588–1602 (1961).
Nomura, M., Erdmann, V. A.: Reconstitution of 50S ribosomal subunits from dissociated molecular components. Nature (Lond.) 228, 144–148 (1970).
Raacke, I. D.: “Cloverleaf” conformation for 5S RNAs. Biochem. biophys. Res. Commun. 31, 528–533 (1968).
—: A model for protein synthesis involving the intermediate formation of peptidyl-5S RNA. Proc. nat. Acad. Sci. (Wash.) 68, 2357–2360 (1971).
Rosset, R., Monier, R., Julien, J.: Les ribosomes d'Escherichia coli. I. Mise en evidence d'un RNA ribosomique de failble poids moléculaire. Bull. Soc. Chim. biol. (Paris) 46, 87–109 (1964).
Scott, J. F., Monier, R., Aubert, M., Reynier, M.: Some optical properties of 5S RNA from E. coli. Biochem. biophys. Res. Commun. 33, 794–800 (1968).
Author information
Authors and Affiliations
Additional information
Communicated by P. Starlinger
Rights and permissions
About this article
Cite this article
Erdmann, V.A., Doberer, H.G. & Sprinzl, M. Structure and function of 5S RNA: The role of the 3′ terminus in 5S RNA function. Molec. Gen. Genetics 114, 89–94 (1972). https://doi.org/10.1007/BF00332779
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00332779