Skip to main content

Advertisement

The plastid rpoA gene encoding a protein homologous to the bacterial RNA polymerase alpha subunit is expressed in pea chloroplasts

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The gene rpoA, encoding a protein homologous to the alpha subunit of RNA polymerase from Escherichia coli has been located in pea chloroplast DNA downstream of the petD gene for subunit IV of the cytochrome b-f complex. Nucleotide sequence analysis has revealed that rpoA encodes a polypeptide of 334 amino acid residues with a molecular weight of 38916. Northern blot analysis has shown that rpoA is co-transcribed with the gene for ribosomal protein S11. A lacZ-rpoA gene-fusion has been constructed and expressed in E. coli. Antibodies raised against the fusion protein have been employed to demonstrate the synthesis of the rpoA gene product in isolated pea chloroplasts. Western blot analysis using these antibodies and antibodies against the RNA polymerase core enzyme from the cyanobacterium, Anabaena 7120, has revealed the presence of the gene product in a crude RNA polymerase preparation from pea chloroplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bedwell D, Davis G, Gosink M, Post L, Nomura M, Kestler H, Zengel JM, Lindahl L (1985) Nucleotide sequence of the alpha ribosomal protein operon of Escherichia coli. Nucleic Acids Res 13:3891–3903

    Google Scholar 

  • Biggin M, Farrell PJ, Barrell BG (1984) Transcription and DNA sequence of the BamHI L fragment of B95-8 Epstein-Barr virus. EMBO J 3:1083–1090

    Google Scholar 

  • Biggin MD, Gibson TJ, Hong GF (1983) Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci USA 80:3963–3965

    Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Blair GE, Ellis RJ (1973) Protein synthesis in chloroplasts. I. Light-driven synthesis of the large subunit of Fraction I protein by isolated pea chloroplasts. Biochim Biophys Acta 319:223–234

    Google Scholar 

  • Bonner WM, Laskey RA (1974) A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem 46:83–88

    Google Scholar 

  • Briat J-F, Bisanz-Sever C, Laulhère J-P, Lerbs S, Lescure A-M, Mache R (1987) The RNA polymerase from chloroplasts and its use for in vitro transcription of plastid genes. Plant Physiol Biochem 25:273–281

    Google Scholar 

  • Bülow S, Link G (1988) Sigma-like activity from mustard (Sinapis alba L.) chloroplasts conferring DNA-binding and transcription specificity to E. coli RNA polymerase. Plant Mol Biol 10:349–357

    Google Scholar 

  • Bünger W, Feierabend J (1980) Capacity for RNA synthesis in 70 S ribosome-deficient plastids of heat-bleached rye leaves. Planta 149:163–169

    Google Scholar 

  • Burgess RR (1976) Purification and physical properties of E. coli RNA polymerase. In: Losick R, Chamberlin M (eds) RNA polymerase. Cold Spring Harbor Laboratories. Cold Spring Harbor, New York, pp 69–100

    Google Scholar 

  • Cohen SN, Chang ACY, Hsu L (1972) Non-chromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci USA 69:2110–2114

    Google Scholar 

  • Covey SN, Hull R (1981) Transcription of cauliflower mosaic virus DNA. Detection of transcripts, properties and location of the gene encoding the virus inclusion body protein. Virology 111:463–474

    Google Scholar 

  • Cushman JC, Hallick RB, Price CA (1988) The two genes for the P700 chlorophyll a apoprotein on the Euglena gracilis chloroplast genome contain multiple introns. Curr Genet 13:159–171

    Google Scholar 

  • Ellis RJ, Hartley MR (1971) Sites of synthesis of chloroplast proteins. Nature New Biol 233:193–196

    Google Scholar 

  • Greenberg BM, Narita JO, De Luca-Flaherty C, Gruissem W, Rushlow KA, Hallick RB (1984) Evidence for two RNA polymerase activities in Euglena gracilis chloroplasts. J Biol Chem 259:14880–14887

    Google Scholar 

  • Greenberg BM, Narita JO, De Luca-Flaherty C, Hallick RB (1985) Properties of chloroplast RNA polymerases. In: Steinback KE, Bonitz S, Arntzen CJ, Bogorad L (eds) Molecular biology of the photosynthetic apparatus. Cold Harbor Spring Laboratory, Cold Spring Harbor, New York, pp 303–310

    Google Scholar 

  • Howe CJ, Bowman CM, Dyer TA, Gray JC (1982) Localisation of wheat chloroplast genes for the beta and epsilon subunits of ATP synthase. Mol Gen Genet 186:525–530

    Google Scholar 

  • Hudson GS, Holton TA, Whitfeld PR, Bottomley W (1988) Spinach chloroplast rpoBC genes encode three subunits of the chloroplast RNA polymerase. J Mol Biol 200:639–654

    Google Scholar 

  • Kieny MP, Lathe R, Lecocq JR (1983) New versatile cloning and sequencing vectors based on bacteriophage M13. Gene 26:91–99

    Google Scholar 

  • Kohchi T, Yoshida T, Komano T, Ohyama K (1988) Divergent mRNA transcription in the chloroplast psbB operon. EMBO J 7:885–891

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680–685

    Google Scholar 

  • Lam E, Chua N-H (1987) Chloroplast DNA gyrase and in vitro regulation of transcription by template topology and novobiocin. Plant Mol Biol 8:415–424

    Google Scholar 

  • Lerbs S, Bräutigam E, Mache R (1988) DNA-dependent RNA polymerase of spinach chloroplasts: characterization of α-like and σ-polypeptides. Mol Gen Genet 211:459–464

    Google Scholar 

  • Lerbs S, Bräutigam E, Parthier B (1985) Polypeptides of DNA-dependent RNA polymerase of spinach chloroplasts: characterization by antibody-linked polymerase assay and determination of sites of synthesis. EMBO J 4:1661–1666

    Google Scholar 

  • McMaster GK, Carmichael GG (1977) Analysis of single- and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc Natl Acad Sci USA 74:4835–4838

    Google Scholar 

  • Newman BJ, Gray JC (1988) Characterisation of a full-length cDNA clone for pea ferredoxin-NADP+ reductase. Plant Mol Biol 10:511–520

    Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574

    Google Scholar 

  • Orozco EM, Mullet JE, Chua N-H (1985) An in vitro system for accurate transcription initiation of chloroplast protein genes. Nucleic Acids Res 13:1283–1302

    Google Scholar 

  • Ovchinnikov YA, Lipkin VN, Modyanov NN, Chertov OY, Smirnov YV (1977) Primary structure of α-subunit of DNA-dependent RNA polymerase from Escherichia coli. FEBS Lett 76:108–111

    Google Scholar 

  • Palmer JD, Thompson WF (1981) Rearrangements in the chloroplast genomes of mung bean and pea. Proc Natl Acad Sci USA 78:5533–5537

    Google Scholar 

  • Palmer JD, Osorio B, Thompson WF (1988) Evolutionary significance of inversions in legume chloroplast DNAs. Curr Genet 14:65–74

    Google Scholar 

  • Phillips AL, Gray JC (1984) Location and nucleotide sequence of the gene for the 15.2 kDa polypeptide of the cytochrome b-f complex from pea chloroplast. Mol Gen Genet 194:477–484

    Google Scholar 

  • Purton S, Gray JC (1987a) Nucleotide sequence of the gene for ribosomal protein S11 in pea chloroplast DNA. Nucleic Acids Res 15:1873

    Google Scholar 

  • Purton S, Gray JC (1987b) Nucleotide sequence of the gene for ribosomal protein L36 in pea chloroplast DNA. Nucleic Acids Res 15:9080

    Google Scholar 

  • Ruf M, Kössel H (1988) Structure and expression of the gene coding for the α-subunit of DNA-dependent RNA polymerase from the chloroplast genome of Zea mays. Nucleic Acids Res 16:5741–5754

    Google Scholar 

  • Sanger F, Coulsen AR, Barrell BG, Smith AJH, Roe BA (1980) Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol 143:161–178

    Google Scholar 

  • Schneider GJ, Tumer NE, Richaud C, Borbely G, Haselkorn R (1987) Purification and characterization of RNA polymerase from the cyanobacterium Anabaena 7120. J Biol Chem 262:14633–14639

    Google Scholar 

  • Shinozaki J, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamagashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete sequence of the tobacco chloroplast genome: its organization and expression. EMBO J 5:2043–2049

    Google Scholar 

  • Siemenroth A, Wollgiehn R, Neumann D, Börner Th (1981) Synthesis of ribosomal RNA in ribosome-deficient plastids of the mutant “albostrians” of Hordeum vulgare L. Planta 153:547–555

    Google Scholar 

  • Sijben-Müller G, Hallick RB, Alt J, Westhoff P, Herrmann RG (1986) Spinach plastid genes coding for initiation factor IF-1, ribosomal protein S11 and RNA polymerase α-subunit. Nucleic Acids Res 2:1029–1044

    Google Scholar 

  • Stanley KK, Luzio JP (1984) Construction of a new family of high efficiency bacterial expression vectors: identification of cDNA clones coding for human liver proteins. EMBO J 3:1429–1434

    Google Scholar 

  • Stern DB, Gruissem W (1987) Control of plastid gene expression: 3′ inverted repeats act as mRNA processing and stabilizing elements but do not terminate transcription. Cell 51:1145–1157

    Google Scholar 

  • Suh J-W, Boylan SA, Price CW (1986) Gene for the alpha subunit of Bacillus subtilis RNA polymerase maps in the ribosomal gene cluster. J Bacteriol 168:65–71

    Google Scholar 

  • Surzycki SJ, Shellenbarger DL (1976) Purification and characterization of a putative sigma factor from Chlamydomonas reinhardii. Proc Natl Acad Sci USA 73:3961–3965

    Google Scholar 

  • Woodbury NW, Roberts LL, Palmer JD, Thompson WF (1988) A transcription map of the pea chloroplast genome. Curr Genet 14:75–89

    Google Scholar 

  • Yen TSB, Webster RE (1981) Bacteriophage f1 gene II and X proteins. J Biol Chem 256:11259–11265

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. M. Lonsdale

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purton, S., Gray, J.C. The plastid rpoA gene encoding a protein homologous to the bacterial RNA polymerase alpha subunit is expressed in pea chloroplasts. Mol Gen Genet 217, 77–84 (1989). https://doi.org/10.1007/BF00330945

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00330945

Key words