Skip to main content

The DNA-binding protein RAP1 is required for efficient transcriptional activation of the yeast PYK glycolytic gene

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

We show by deletion mutagenesis, followed by in vivo and in vitro analysis, that the binding of a protein factor to the upstream activation sequence (USA) of the Saccharomyces cerevisiae glycolytic gene PYK, encoding pyruvate kinase, is required for efficient transcription of the corresponding coding region. In addition, gel electrophoretic mobility shift and DNase I protection studies, involving yeast gene products expressed in E. coli, suggest that this trans-acting DNA-binding protein is encoding by the RAP1 gene. The identification of RAP1 binding sites located within the UAS element of the yeast PYK, PGK (phosphoglycerate kinase) and ENO1 (enolase) genes, and in the 5′-upstream region of the ADHI (alcohol dehydrogenase) gene, suggests that a mechanism of coordinate gene expression involving several of the glycolytic genes may exist in yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews BJ, Beatty LG, Sadowski PD (1987) J Mol Biol 193:345–358

    Google Scholar 

  • Baker HV (1986) Mol Cell Biol 6:3774–3784

    Google Scholar 

  • Bender A, Sprague Jr GF (1987) Cell 50:681–691

    Google Scholar 

  • Bennetzen JL, Hall BD (1982) J Biol Chem 275:3018–3025

    Google Scholar 

  • Birnboim HC, Doly J (1979) Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Brand AH, Micklem G, Nasmyth K (1987) Cell 51:709–719

    Google Scholar 

  • Buchman AR, Kimmerley WJ, Rine J, Kornberg RD (1988a) Mol Cell Biol 8:210–225

    Google Scholar 

  • Buchman AR, Lue NF, Kornberg RD (1988b) Mol Cell Biol 8:5086–5099

    Google Scholar 

  • Burke RL, Tekamp-Olson P, Najarian R (1983) J Biol Chem 258:2193–2201

    Google Scholar 

  • Chambers A, Stanway C, Kingsman AJ, Kingsman SM (1988) Nucleic Acids Res 16:8245–8260

    Google Scholar 

  • Chambers A, Tsang JSH, Stanway C, Kingsman AJ, Kingsman SM (1989) Mol Cell Biol 9:5516–5524

    Google Scholar 

  • Clifton D, Fraenkel DG (1981) J Biol Chem 256:13074–13078

    Google Scholar 

  • Cobianchi F, Wilson SH (1987) Methods Enzymol 152:94–110

    Google Scholar 

  • Cohen R, Holland JP, Yokoi T, Holland MJ (1986) Mol Cell Biol 6:2287–2297

    Google Scholar 

  • Dente L, Cesareni G, Cortese R (1983) Nucleic Acids Res 11:1645–1655

    Google Scholar 

  • Fraenkel DG (1982) In: Strathern JN, Jones EW, Broach JR (eds) The Molecular biology of the yeast Saccharomyces: metabolism and gene expression. Cold Spring Laboratory, Cold Spring Harbor, New York, pp 1–37

    Google Scholar 

  • Guarente L (1983) Methods Enzymol 101:181–191

    Google Scholar 

  • Hamil KG, Nam HG, Fried HM (1988) Mol Cell Biol 8:4328–4341

    Google Scholar 

  • Holland MJ, Yokoi T, Holland JP, Myambo K, Innis MA (1987) Mol Cell Biol 7:813–820

    Google Scholar 

  • Huet J, Sentenac A (1987) Proc Natl Acad Sci USA 84:3648–3652

    Google Scholar 

  • Kimmerly W, Buchman A, Kornberg R, Rine J (1988) EMBO J 7:2241–2253

    Google Scholar 

  • Machida M, Uemura H, Jigami Y, Tanaka H (1988) Nucleic Acids Res 16:1407–1422

    Google Scholar 

  • Maitra PK, Lobo Z (1971) J Biol Chem 246:489–499

    Google Scholar 

  • McNeil JB, Smith M (1985) Mol Cell Biol 5:3534–3551

    Google Scholar 

  • McNeil JB, Storms RK, Friesen JD (1981) Curr Genet 2:17–25

    Google Scholar 

  • Messing J (1983) Methods Enzymol 101:20–78

    Google Scholar 

  • Nishizawa M, Araki R, Teranishi Y (1989) Mol Cell Biol 9:442–451

    Google Scholar 

  • Ogden JE, Stanway C, Kim S, Mellor J, Kingsman AJ, Kingsman SM (1986) Mol Cell Biol 6:4335–4343

    Google Scholar 

  • Rine J, Herskowitz I (1987) Genetics 116:9–22

    Google Scholar 

  • Sanger F, Coulson AR (1978) FEBS Lett 87:107–110

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Shore D, Nasmyth K (1987) Cell 51:721–732

    Google Scholar 

  • Stanway C, Mellor J, Ogden JE, Kingsman AJ, Kingsman SM (1987) Nucleic Acids Res 15:6855–6873

    Google Scholar 

  • Uemura H, Shiba T, Paterson M, Jigami Y, Tanaka H (1986) Gene 45:67–75

    Google Scholar 

  • Woudt LP, Mager WH, Nieuwint RTM, Wassenaar GM, van der Kuyl AC, Murre JJ, Hoekman MFM, Brockhoff PGM, Planta RJ (1987) Nucleic Acids Res 15:6037–6048

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. H. Haynes

Rights and permissions

Reprints and permissions

About this article

Cite this article

McNeil, J.B., Dykshoorn, P., Huy, J.N. et al. The DNA-binding protein RAP1 is required for efficient transcriptional activation of the yeast PYK glycolytic gene. Curr Genet 18, 405–412 (1990). https://doi.org/10.1007/BF00309909

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00309909

Key words