Summary
Streptomyces griseus TÜ 6 produces the sideromycin antibiotic albomycin δ2 in concentrations of approximately 1 mg/l. The production depends on the phosphate, iron, and ornithine concentrations in the medium. In optimized conditions, the production of albomycin could be increased to 25 mg/l in a fedbatch fermentation. Isolation and purification could be achieved by reversed-phase and size-exclusion chromatography and preparative high-performance liquid chromatography (HPLC). The detection limit in quantitative determination of albomycin by HPLC was reached at a concentration of 1 μg/ml, which was 100 times less sensitive than biological testing, but this method, although time-consuming, was more selective.
Similar content being viewed by others
References
Anke T, Diekmann H (1974) Eibau von δ-N-hydroxy-L-Ornithin und δ-N-acyl-δ-N-hydroxy-L-Ornithin in Sideramine von Pilzen. Arch Microbiol 95:227–236
Benz G, Schröder T, Kurz J, Wünsche C, Karl W, Steffens G, Pfitzner J, Schmidt D (1982) Constitution of the deferriform of the albomycins δ1, δ2, and ε. Angew Chem Int Ed Engl 21:527–528
Brazhnikova MG, Mikeš O, Lomakina NN (1957) Studies on homogeneity of albomycin. Biochimija 22: 111–117
Brinberg SL, Grinuk TI (1959) Physiological features of Actinomyces subtropicus in connection with the biosynthesis of albomycin. Antibiotiki 4:23–28
Davis BD, Mingioli ES (1950) Mutants of Escherichia coli requiring methionine or vitamin B 12. J Bacteriol 60:17–28
Demain AL, Kennel YM, Aharonowitz Y (1979) Carbon catabolite regulation of secondary metabolism. In: Bull AT, Ellwood DC, Ratledge C (eds) Microbial technology: current state, future prospects. Cambridge University Press, London, pp 163–185
Drew SW, Demain AL (1977) Effect of primary metabolites on secondary metabolism. Ann Rev Microbiol 31:343–356
Fiedler H-P, Sauerbier J (1978) Isolation and quantitative determination of siderochromes. Eur J Appl Microbiol Biotechnol 5:51–57
Gause GF (1955) Recent studies on albomycin, a new antibiotic. Brit Med J 12:1177–1179
Gause GF, Brazhnikova MG (1951) Die Wirkung von Albomycin gegen Bakterien. Nov Med (Moscow) 23:3–7
Kappner M, Hasenböhler A, Zähner H (1977) Optimierung der Desferri-Ferricrocinbildung bei Aspergillus viridi-nutans Ducker & Thrower. Arch Microbiol 115:323–331
Keller-Schierlein W, Prelog V, Zähner H (1964) Siderochrome (Natürliche Eisen-(III)-trihydroxamat-Komplexe). Fortschr Chem Org Naturst 22:279–322
Kuenzi MT (1978) Process design and control in antibiotic fermentations. In: Hütter R, Leisinger T, Nüesch J, Wehrli W (eds) Antibiotics and other secondary metabolites. Academic Press, London New York San Francisco, pp 39–56
Maehr H, Berger J (1969) The production, isolation and characterization of a grisein-like sideromycin complex. Biotechnol Bioeng 11:1111–1123
Maehr H, Pitcher RG (1971) Identity of albomycin δ2 and antibiotic Ro 5-2667. J Antibiot 24:830–834
Martin JF (1977) Control of antibiotic synthesis by phosphate. Adv Biochem Eng 6:105–127
Martin JF, Demain AL (1980) Control of antibiotic biosynthesis. Microbiol Rev 44:230–251
Reynolds D, Waksman SA (1948) Grisein, an antibiotic produced by certain strains of Streptomyces griseus. J Bacteriol 55:739–752
Stapley EO, Ormond RE (1957) Similarity of albomycin and grisein. Science 125:587–589
Turková J, Mikeš O, Šorm F (1962) Chemical composition of the antibiotic albomycin. III. Some degradation products of albomycin. Collect Czech Chem Commun 27:591
Zähner H, Kurth R (1982) Over-production of microbial metabolites. The supply of precursors from the intermediary metabolism. In: Krumphanzl V, Sikyta B, Vanek Z (eds) Overproduction of microbial products. Academic Press, London, pp 172–179
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Fiedler, H.P., Walz, F., Döhle, A. et al. Albomycin: Studies on fermentation, isolation and quantitative determination. Appl Microbiol Biotechnol 21, 341–347 (1985). https://doi.org/10.1007/BF00249977
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00249977