Abstract
The assembly and egress of herpes simplex virus (HSV) is a complicated multistage process that involves several different cellular compartments and the activity of many viral and cellular proteins. The process begins in the nucleus, with capsid assembly followed by genome packaging into the preformed capsids. The DNA-filled capsids (nucleocapsids) then exit the nucleus by a process of envelopment at the inner nuclear membrane followed by fusion with the outer nuclear membrane. In the cytoplasm nucleocapsids associate with tegument proteins, which form a complicated protein network that links the nucleocapsid to the cytoplasmic domains of viral envelope proteins. Nucleocapsids and associated tegument then undergo secondary envelopment at intracellular membranes originating from late secretory pathway and endosomal compartments. This leads to assembled virions in the lumen of large cytoplasmic vesicles, which are then transported to the cell periphery to fuse with the plasma membrane and release virus particles from the cell. The details of this multifaceted process are described in this chapter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aksyuk AA, Newcomb WW, Cheng N, Winkler DC, Fontana J, Heymann JB, Steven AC (2015) Subassemblies and asymmetry in assembly of herpes simplex virus procapsid. MBio 6(5):e01525–e01515. https://doi.org/10.1128/mBio.01525-15
Albecka A, Laine RF, Janssen AF, Kaminski CF, Crump CM (2016) HSV-1 glycoproteins are delivered to virus assembly sites through dynamin-dependent endocytosis. Traffic 17(1):21–39. https://doi.org/10.1111/tra.12340
Albecka A, Owen DJ, Ivanova L, Brun J, Liman R, Davies L, Ahmed MF, Colaco S, Hollinshead M, Graham SC, Crump CM (2017) Dual function of the pUL7-pUL51 tegument protein complex in herpes simplex virus 1 infection. J Virol 91(2). https://doi.org/10.1128/JVI.02196-16
Alconada A, Bauer U, Sodeik B, Hoflack B (1999) Intracellular traffic of herpes simplex virus glycoprotein gE: characterization of the sorting signals required for its trans-Golgi network localization. J Virol 73(1):377–387
Baines JD, Wills E, Jacob RJ, Pennington J, Roizman B (2007) Glycoprotein M of herpes simplex virus 1 is incorporated into virions during budding at the inner nuclear membrane. J Virol 81(2):800–812. https://doi.org/10.1128/JVI.01756-06
Beitia Ortiz de Zarate I, Kaelin K, Rozenberg F (2004) Effects of mutations in the cytoplasmic domain of herpes simplex virus type 1 glycoprotein B on intracellular transport and infectivity. J Virol 78(3):1540–1551
Bigalke JM, Heldwein EE (2017) Have NEC coat, will travel: structural basis of membrane budding during nuclear Egress in herpesviruses. Adv Virus Res 97:107–141. https://doi.org/10.1016/bs.aivir.2016.07.002
Bjerke SL, Roller RJ (2006) Roles for herpes simplex virus type 1 UL34 and US3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress. Virology 347(2):261–276. https://doi.org/10.1016/j.virol.2005.11.053
Bohannon KP, Jun Y, Gross SP, Smith GA (2013) Differential protein partitioning within the herpesvirus tegument and envelope underlies a complex and variable virion architecture. Proc Natl Acad Sci U S A 110(17):E1613–E1620. https://doi.org/10.1073/pnas.1221896110
Boutell C, Everett RD (2013) Regulation of alphaherpesvirus infections by the ICP0 family of proteins. J Gen Virol 94(Pt 3):465–481. https://doi.org/10.1099/vir.0.048900-0
Browne H, Bell S, Minson T, Wilson DW (1996) An endoplasmic reticulum-retained herpes simplex virus glycoprotein H is absent from secreted virions: evidence for reenvelopment during egress. J Virol 70(7):4311–4316
Bucks MA, O’Regan KJ, Murphy MA, Wills JW, Courtney RJ (2007) Herpes simplex virus type 1 tegument proteins VP1/2 and UL37 are associated with intranuclear capsids. Virology 361 (2):316–324. S0042-6822(06)00880-4 [pii] https://doi.org/10.1016/j.virol.2006.11.031
Calistri A, Munegato D, Toffoletto M, Celestino M, Franchin E, Comin A, Sartori E, Salata C, Parolin C, Palu G (2015) Functional interaction between the ESCRT-I component TSG101 and the HSV-1 tegument ubiquitin specific protease. J Cell Physiol 230(8):1794–1806. https://doi.org/10.1002/jcp.24890
Campbell ME, Palfreyman JW, Preston CM (1984) Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate early transcription. J Mol Biol 180(1):1–19
Cardone G, Heymann JB, Cheng N, Trus BL, Steven AC (2012a) Procapsid assembly, maturation, nuclear exit: dynamic steps in the production of infectious herpesvirions. Adv Exp Med Biol 726:423–439. https://doi.org/10.1007/978-1-4614-0980-9_19
Cardone G, Newcomb WW, Cheng N, Wingfield PT, Trus BL, Brown JC, Steven AC (2012b) The UL36 tegument protein of herpes simplex virus 1 has a composite binding site at the capsid vertices. J Virol 86(8):4058–4064. https://doi.org/10.1128/JVI.00012-12
Cheung P, Banfield BW, Tufaro F (1991) Brefeldin A arrests the maturation and egress of herpes simplex virus particles during infection. J Virol 65(4):1893–1904
Clarke RW, Monnier N, Li H, Zhou D, Browne H, Klenerman D (2007) Two-color fluorescence analysis of individual virions determines the distribution of the copy number of proteins in herpes simplex virus particles. Biophys J 93(4):1329–1337. https://doi.org/10.1529/biophysj.107.106351
Coller KE, Lee JI, Ueda A, Smith GA (2007) The capsid and tegument of the alphaherpesviruses are linked by an interaction between the UL25 and VP1/2 proteins. J Virol 81 (21):11790–11797. JVI.01113-07 [pii] https://doi.org/10.1128/JVI.01113-07
Crump CM, Bruun B, Bell S, Pomeranz LE, Minson T, Browne HM (2004) Alphaherpesvirus glycoprotein M causes the relocalization of plasma membrane proteins. J Gen Virol 85(Pt 12):3517–3527. https://doi.org/10.1099/vir.0.80361-0
Crump CM, Yates C, Minson T (2007) Herpes simplex virus type 1 cytoplasmic envelopment requires functional Vps4. J Virol 81 (14):7380–7387. JVI.00222-07 [pii] https://doi.org/10.1128/JVI.00222-07
Cunningham A, Miranda-Saksena M, Diefenbach R, Johnson D (2013) Letter in response to: making the case: married versus separate models of alphaherpes virus anterograde transport in axons. Rev Med Virol 23(6):414–418. https://doi.org/10.1002/rmv.1760
de Wind N, Wagenaar F, Pol J, Kimman T, Berns A (1992) The pseudorabies virus homology of the herpes simplex virus UL21 gene product is a capsid protein which is involved in capsid maturation. J Virol 66(12):7096–7103
Desai PJ (2000) A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells. J Virol 74(24):11608–11618
Diefenbach RJ, Miranda-Saksena M, Diefenbach E, Holland DJ, Boadle RA, Armati PJ, Cunningham AL (2002) Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain. J Virol 76(7):3282–3291
Diefenbach RJ, Davis A, Miranda-Saksena M, Fernandez MA, Kelly BJ, Jones CA, LaVail JH, Xue J, Lai J, Cunningham AL (2015) The basic domain of herpes simplex virus 1 pUS9 recruits Kinesin-1 to facilitate egress from neurons. J Virol 90(4):2102–2111. https://doi.org/10.1128/JVI.03041-15
Dingwell KS, Johnson DC (1998) The herpes simplex virus gE-gI complex facilitates cell-to-cell spread and binds to components of cell junctions. J Virol 72(11):8933–8942
Dingwell KS, Brunetti CR, Hendricks RL, Tang Q, Tang M, Rainbow AJ, Johnson DC (1994) Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junctions of cultured cells. J Virol 68(2):834–845
DuRaine G, Wisner TW, Howard P, Williams M, Johnson DC (2017) Herpes simplex virus gE/gI and US9 promote both envelopment and sorting of virus particles in the cytoplasm of neurons, two processes that precede anterograde transport in axons. J Virol 91(11). https://doi.org/10.1128/JVI.00050-17
Elliott G, Mouzakitis G, O'Hare P (1995) VP16 interacts via its activation domain with VP22, a tegument protein of herpes simplex virus, and is relocated to a novel macromolecular assembly in coexpressing cells. J Virol 69(12):7932–7941
Fan WH, Roberts AP, McElwee M, Bhella D, Rixon FJ, Lauder R (2015) The large tegument protein pUL36 is essential for formation of the capsid vertex-specific component at the capsid-tegument interface of herpes simplex virus 1. J Virol 89(3):1502–1511. https://doi.org/10.1128/JVI.02887-14
Farnsworth A, Johnson DC (2006) Herpes simplex virus gE/gI must accumulate in the trans-Golgi network at early times and then redistribute to cell junctions to promote cell-cell spread. J Virol 80(7):3167–3179. https://doi.org/10.1128/JVI.80.7.3167-3179.2006
Farnsworth A, Goldsmith K, Johnson DC (2003) Herpes simplex virus glycoproteins gD and gE/gI serve essential but redundant functions during acquisition of the virion envelope in the cytoplasm. J Virol 77(15):8481–8494
Farnsworth A, Wisner TW, Johnson DC (2007a) Cytoplasmic residues of herpes simplex virus glycoprotein gE required for secondary envelopment and binding of tegument proteins VP22 and UL11 to gE and gD. J Virol 81 (1):319–331. JVI.01842-06 [pii] https://doi.org/10.1128/JVI.01842-06
Farnsworth A, Wisner TW, Webb M, Roller R, Cohen G, Eisenberg R, Johnson DC (2007b) Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane. Proc Natl Acad Sci U S A 104(24):10187–10192. https://doi.org/10.1073/pnas.0703790104
Foster TP, Melancon JM, Baines JD, Kousoulas KG (2004a) The herpes simplex virus type 1 UL20 protein modulates membrane fusion events during cytoplasmic virion morphogenesis and virus-induced cell fusion. J Virol 78(10):5347–5357
Foster TP, Melancon JM, Olivier TL, Kousoulas KG (2004b) Herpes simplex virus type 1 glycoprotein K and the UL20 protein are interdependent for intracellular trafficking and trans-Golgi network localization. J Virol 78(23):13262–13277. https://doi.org/10.1128/JVI.78.23.13262-13277.2004
Gao J, Hay TJM, Banfield BW (2017) The product of the herpes simplex virus 2 UL16 gene is critical for the egress of capsids from the nuclei of infected cells. J Virol 91(10). https://doi.org/10.1128/JVI.00350-17
Gross ST, Harley CA, Wilson DW (2003) The cytoplasmic tail of herpes simplex virus glycoprotein H binds to the tegument protein VP16 in vitro and in vivo. Virology 317(1):1–12
Hagen C, Dent KC, Zeev-Ben-Mordehai T, Grange M, Bosse JB, Whittle C, Klupp BG, Siebert CA, Vasishtan D, Bauerlein FJ, Cheleski J, Werner S, Guttmann P, Rehbein S, Henzler K, Demmerle J, Adler B, Koszinowski U, Schermelleh L, Schneider G, Enquist LW, Plitzko JM, Mettenleiter TC, Grunewald K (2015) Structural basis of vesicle formation at the inner nuclear membrane. Cell 163(7):1692–1701. https://doi.org/10.1016/j.cell.2015.11.029
Han J, Chadha P, Meckes DG Jr, Baird NL, Wills JW (2011) Interaction and interdependent packaging of tegument protein UL11 and glycoprotein e of herpes simplex virus. J Virol 85(18):9437–9446. https://doi.org/10.1128/JVI.05207-11
Han J, Chadha P, Starkey JL, Wills JW (2012) Function of glycoprotein E of herpes simplex virus requires coordinated assembly of three tegument proteins on its cytoplasmic tail. Proc Natl Acad Sci U S A 109(48):19798–19803. https://doi.org/10.1073/pnas.1212900109
Heming JD, Huffman JB, Jones LM, Homa FL (2014) Isolation and characterization of the herpes simplex virus 1 terminase complex. J Virol 88(1):225–236. https://doi.org/10.1128/JVI.02632-13
Henaff D, Radtke K, Lippe R (2012) Herpesviruses exploit several host compartments for envelopment. Traffic 13(11):1443–1449. https://doi.org/10.1111/j.1600-0854.2012.01399.x
Henaff D, Remillard-Labrosse G, Loret S, Lippe R (2013) Analysis of the early steps of herpes simplex virus 1 capsid tegumentation. J Virol 87(9):4895–4906. https://doi.org/10.1128/JVI.03292-12
Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21(1):77–91. https://doi.org/10.1016/j.devcel.2011.05.015
Heymann JB, Cheng N, Newcomb WW, Trus BL, Brown JC, Steven AC (2003) Dynamics of herpes simplex virus capsid maturation visualized by time-lapse cryo-electron microscopy. Nat Struct Biol 10(5):334–341. https://doi.org/10.1038/nsb922
Hogue IB, Bosse JB, Hu JR, Thiberge SY, Enquist LW (2014) Cellular mechanisms of alpha herpesvirus egress: live cell fluorescence microscopy of pseudorabies virus exocytosis. PLoS Pathog 10(12):e1004535. https://doi.org/10.1371/journal.ppat.1004535
Hollinshead M, Johns HL, Sayers CL, Gonzalez-Lopez C, Smith GL, Elliott G (2012) Endocytic tubules regulated by Rab GTPases 5 and 11 are used for envelopment of herpes simplex virus. EMBO J 31(21):4204–4220. https://doi.org/10.1038/emboj.2012.262
Jambunathan N, Chouljenko D, Desai P, Charles AS, Subramanian R, Chouljenko VN, Kousoulas KG (2014) Herpes simplex virus 1 protein UL37 interacts with viral glycoprotein gK and membrane protein UL20 and functions in cytoplasmic virion envelopment. J Virol 88(11):5927–5935. https://doi.org/10.1128/JVI.00278-14
Jayachandra S, Baghian A, Kousoulas KG (1997) Herpes simplex virus type 1 glycoprotein K is not essential for infectious virus production in actively replicating cells but is required for efficient envelopment and translocation of infectious virions from the cytoplasm to the extracellular space. J Virol 71(7):5012–5024
Johns HL, Gonzalez-Lopez C, Sayers C, Hollinshead M, Elliott G (2011) A role for human Rab6 in Herpes Simplex Virus Morphogenesis. In: 36th international Herpesvirus workshop, Gdansk, Poland
Johnson DC, Webb M, Wisner TW, Brunetti C (2001) Herpes simplex virus gE/gI sorts nascent virions to epithelial cell junctions, promoting virus spread. J Virol 75(2):821–833. https://doi.org/10.1128/JVI.75.2.821-833.2001
Johnson DC, Wisner TW, Wright CC (2011) Herpes simplex virus glycoproteins gB and gD function in a redundant fashion to promote secondary envelopment. J Virol 85(10):4910–4926. https://doi.org/10.1128/JVI.00011-11
Kato A, Yamamoto M, Ohno T, Kodaira H, Nishiyama Y, Kawaguchi Y (2005) Identification of proteins phosphorylated directly by the Us3 protein kinase encoded by herpes simplex virus 1. J Virol 79(14):9325–9331. https://doi.org/10.1128/JVI.79.14.9325-9331.2005
Kato A, Yamamoto M, Ohno T, Tanaka M, Sata T, Nishiyama Y, Kawaguchi Y (2006) Herpes simplex virus 1-encoded protein kinase UL13 phosphorylates viral Us3 protein kinase and regulates nuclear localization of viral envelopment factors UL34 and UL31. J Virol 80(3):1476–1486. https://doi.org/10.1128/JVI.80.3.1476-1486.2006
Klupp B, Altenschmidt J, Granzow H, Fuchs W, Mettenleiter TC (2008) Glycoproteins required for entry are not necessary for egress of pseudorabies virus. J Virol 82(13):6299–6309. https://doi.org/10.1128/JVI.00386-08
Koyama AH, Uchida T (1994) Inhibition by Brefeldin A of the envelopment of nucleocapsids in herpes simplex virus type 1-infected Vero cells. Arch Virol 135(3–4):305–317
Kratchmarov R, Taylor MP, Enquist LW (2012) Making the case: married versus separate models of alphaherpes virus anterograde transport in axons. Rev Med Virol 22(6):378–391. https://doi.org/10.1002/rmv.1724
Kratchmarov R, Kramer T, Greco TM, Taylor MP, Ch'ng TH, Cristea IM, Enquist LW (2013) Glycoproteins gE and gI are required for efficient KIF1A-dependent anterograde axonal transport of alphaherpesvirus particles in neurons. J Virol 87(17):9431–9440. https://doi.org/10.1128/JVI.01317-13
Laine RF, Albecka A, van de Linde S, Rees EJ, Crump CM, Kaminski CF (2015) Structural analysis of herpes simplex virus by optical super-resolution imaging. Nat Commun 6:5980. https://doi.org/10.1038/ncomms6980
Lau SY, Crump CM (2015) HSV-1 gM and the gK/pUL20 complex are important for the localization of gD and gH/L to viral assembly sites. Virus 7(3):915–938. https://doi.org/10.3390/v7030915
Le Sage V, Jung M, Alter JD, Wills EG, Johnston SM, Kawaguchi Y, Baines JD, Banfield BW (2013) The herpes simplex virus 2 UL21 protein is essential for virus propagation. J Virol 87(10):5904–5915. https://doi.org/10.1128/JVI.03489-12
Leach NR, Roller RJ (2010) Significance of host cell kinases in herpes simplex virus type 1 egress and lamin-associated protein disassembly from the nuclear lamina. Virology 406(1):127–137. https://doi.org/10.1016/j.virol.2010.07.002
Lee JH, Vittone V, Diefenbach E, Cunningham AL, Diefenbach RJ (2008) Identification of structural protein-protein interactions of herpes simplex virus type 1. Virology 378 (2):347–354. S0042-6822(08)00390-5 [pii] https://doi.org/10.1016/j.virol.2008.05.035
Leege T, Fuchs W, Granzow H, Kopp M, Klupp BG, Mettenleiter TC (2009) Effects of simultaneous deletion of pUL11 and glycoprotein M on virion maturation of herpes simplex virus type 1. J Virol 83(2):896–907. https://doi.org/10.1128/JVI.01842-08
Liu Z, Kato A, Shindo K, Noda T, Sagara H, Kawaoka Y, Arii J, Kawaguchi Y (2014) Herpes simplex virus 1 UL47 interacts with viral nuclear egress factors UL31, UL34, and Us3 and regulates viral nuclear egress. J Virol 88(9):4657–4667. https://doi.org/10.1128/JVI.00137-14
Loret S, Guay G, Lippe R (2008) Comprehensive characterization of extracellular herpes simplex virus type 1 virions. J Virol 82 (17):8605–8618. JVI.00904-08 [pii] https://doi.org/10.1128/JVI.00904-08
Lymberopoulos MH, Bourget A, Ben Abdeljelil N, Pearson A (2011) Involvement of the UL24 protein in herpes simplex virus 1-induced dispersal of B23 and in nuclear egress. Virology 412(2):341–348. https://doi.org/10.1016/j.virol.2011.01.016
Maringer K, Stylianou J, Elliott G (2012) A network of protein interactions around the herpes simplex virus tegument protein VP22. J Virol 86(23):12971–12982. https://doi.org/10.1128/JVI.01913-12
Maruzuru Y, Shindo K, Liu Z, Oyama M, Kozuka-Hata H, Arii J, Kato A, Kawaguchi Y (2014) Role of herpes simplex virus 1 immediate early protein ICP22 in viral nuclear egress. J Virol 88(13):7445–7454. https://doi.org/10.1128/JVI.01057-14
McClelland DA, Aitken JD, Bhella D, McNab D, Mitchell J, Kelly SM, Price NC, Rixon FJ (2002) pH reduction as a trigger for dissociation of herpes simplex virus type 1 scaffolds. J Virol 76(15):7407–7417
McMillan TN, Johnson DC (2001) Cytoplasmic domain of herpes simplex virus gE causes accumulation in the trans-Golgi network, a site of virus envelopment and sorting of virions to cell junctions. J Virol 75(4):1928–1940. https://doi.org/10.1128/JVI.75.4.1928-1940.2001
Melancon JM, Foster TP, Kousoulas KG (2004) Genetic analysis of the herpes simplex virus type 1 UL20 protein domains involved in cytoplasmic virion envelopment and virus-induced cell fusion. J Virol 78(14):7329–7343. https://doi.org/10.1128/JVI.78.14.7329-7343.2004
Mijatov B, Cunningham AL, Diefenbach RJ (2007) Residues F593 and E596 of HSV-1 tegument protein pUL36 (VP1/2) mediate binding of tegument protein pUL37. Virology 368(1):26–31. https://doi.org/10.1016/j.virol.2007.07.005
Miranda-Saksena M, Boadle RA, Aggarwal A, Tijono B, Rixon FJ, Diefenbach RJ, Cunningham AL (2009) Herpes simplex virus utilizes the large secretory vesicle pathway for anterograde transport of tegument and envelope proteins and for viral exocytosis from growth cones of human fetal axons. J Virol 83 (7):3187–3199. JVI.01579-08 [pii] https://doi.org/10.1128/JVI.01579-08
Mossman KL, Sherburne R, Lavery C, Duncan J, Smiley JR (2000) Evidence that herpes simplex virus VP16 is required for viral egress downstream of the initial envelopment event. J Virol 74(14):6287–6299
Naldinho-Souto R, Browne H, Minson T (2006) Herpes simplex virus tegument protein VP16 is a component of primary enveloped virions. J Virol 80(5):2582–2584. https://doi.org/10.1128/JVI.80.5.2582-2584.2006
Newcomb WW, Trus BL, Booy FP, Steven AC, Wall JS, Brown JC (1993) Structure of the herpes simplex virus capsid. Molecular composition of the pentons and the triplexes. J Mol Biol 232(2):499–511. https://doi.org/10.1006/jmbi.1993.1406
Newcomb WW, Homa FL, Thomsen DR, Booy FP, Trus BL, Steven AC, Spencer JV, Brown JC (1996) Assembly of the herpes simplex virus capsid: characterization of intermediates observed during cell-free capsid formation. J Mol Biol 263(3):432–446. https://doi.org/10.1006/jmbi.1996.0587
Newcomb WW, Juhas RM, Thomsen DR, Homa FL, Burch AD, Weller SK, Brown JC (2001) The UL6 gene product forms the portal for entry of DNA into the herpes simplex virus capsid. J Virol 75(22):10923–10932. https://doi.org/10.1128/JVI.75.22.10923-10932.2001
Newcomb WW, Thomsen DR, Homa FL, Brown JC (2003) Assembly of the herpes simplex virus capsid: identification of soluble scaffold-portal complexes and their role in formation of portal-containing capsids. J Virol 77(18):9862–9871
Newcomb WW, Homa FL, Brown JC (2005) Involvement of the portal at an early step in herpes simplex virus capsid assembly. J Virol 79(16):10540–10546. https://doi.org/10.1128/JVI.79.16.10540-10546.2005
Newcomb WW, Homa FL, Brown JC (2006) Herpes simplex virus capsid structure: DNA packaging protein UL25 is located on the external surface of the capsid near the vertices. J Virol 80(13):6286–6294. https://doi.org/10.1128/JVI.02648-05
Newcomb WW, Jones LM, Dee A, Chaudhry F, Brown JC (2012) Role of a reducing environment in disassembly of the herpesvirus tegument. Virology 431(1–2):71–79. https://doi.org/10.1016/j.virol.2012.05.017
Newcomb WW, Fontana J, Winkler DC, Cheng N, Heymann JB, Steven AC (2017) The primary enveloped virion of herpes simplex virus 1: its role in nuclear egress. MBio 8(3). https://doi.org/10.1128/mBio.00825-17
Oda S, Arii J, Koyanagi N, Kato A, Kawaguchi Y (2016) The interaction between herpes simplex virus 1 tegument proteins UL51 and UL14 and its role in Virion morphogenesis. J Virol 90(19):8754–8767. https://doi.org/10.1128/JVI.01258-16
O'Hara M, Rixon FJ, Stow ND, Murray J, Murphy M, Preston VG (2010) Mutational analysis of the herpes simplex virus type 1 UL25 DNA packaging protein reveals regions that are important after the viral DNA has been packaged. J Virol 84(9):4252–4263. https://doi.org/10.1128/JVI.02442-09
Okoye ME, Sexton GL, Huang E, McCaffery JM, Desai P (2006) Functional analysis of the triplex proteins (VP19C and VP23) of herpes simplex virus type 1. J Virol 80(2):929–940. https://doi.org/10.1128/JVI.80.2.929-940.2006
Padula ME, Sydnor ML, Wilson DW (2009) Isolation and preliminary characterization of herpes simplex virus 1 primary enveloped virions from the perinuclear space. J Virol 83(10):4757–4765. https://doi.org/10.1128/JVI.01927-08
Pante N, Kann M (2002) Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol Biol Cell 13(2):425–434. https://doi.org/10.1091/mbc.01-06-0308
Park R, Baines JD (2006) Herpes simplex virus type 1 infection induces activation and recruitment of protein kinase C to the nuclear membrane and increased phosphorylation of lamin B. J Virol 80(1):494–504. https://doi.org/10.1128/JVI.80.1.494-504.2006
Pawliczek T, Crump CM (2009) Herpes simplex virus type 1 production requires a functional ESCRT-III complex but is independent of TSG101 and ALIX expression. J Virol 83 (21):11254–11264. JVI.00574-09 [pii] https://doi.org/10.1128/JVI.00574-09
Radtke K, Kieneke D, Wolfstein A, Michael K, Steffen W, Scholz T, Karger A, Sodeik B (2010) Plus- and minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures. PLoS Pathog 6(7):e1000991. https://doi.org/10.1371/journal.ppat.1000991
Ren Y, Bell S, Zenner HL, Lau SY, Crump CM (2012) Glycoprotein M is important for the efficient incorporation of glycoprotein H-L into herpes simplex virus type 1 particles. J Gen Virol 93(Pt 2):319–329. https://doi.org/10.1099/vir.0.035444-0
Reynolds AE, Ryckman BJ, Baines JD, Zhou Y, Liang L, Roller RJ (2001) U(L)31 and U(L)34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J Virol 75(18):8803–8817
Reynolds AE, Wills EG, Roller RJ, Ryckman BJ, Baines JD (2002) Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J Virol 76(17):8939–8952
Rixon FJ, Addison C, McLauchlan J (1992) Assembly of enveloped tegument structures (L particles) can occur independently of virion maturation in herpes simplex virus type 1-infected cells. J Gen Virol 73(Pt 2):277–284. https://doi.org/10.1099/0022-1317-73-2-277
Roberts KL, Baines JD (2010) Myosin Va enhances secretion of herpes simplex virus 1 virions and cell surface expression of viral glycoproteins. J Virol. JVI.00732-10 [pii] https://doi.org/10.1128/JVI.00732-10
Roberts AP, Abaitua F, O'Hare P, McNab D, Rixon FJ, Pasdeloup D (2009) Differing roles of inner tegument proteins pUL36 and pUL37 during entry of herpes simplex virus type 1. J Virol 83 (1):105–116. JVI.01032-08 [pii] https://doi.org/10.1128/JVI.01032-08
Roller RJ, Fetters R (2015) The herpes simplex virus 1 UL51 protein interacts with the UL7 protein and plays a role in its recruitment into the virion. J Virol 89(6):3112–3122. https://doi.org/10.1128/JVI.02799-14
Roller RJ, Haugo AC, Yang K, Baines JD (2014) The herpes simplex virus 1 UL51 gene product has cell type-specific functions in cell-to-cell spread. J Virol 88(8):4058–4068. https://doi.org/10.1128/JVI.03707-13
Roos WH, Radtke K, Kniesmeijer E, Geertsema H, Sodeik B, Wuite GJ (2009) Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids. Proc Natl Acad Sci U S A 106(24):9673–9678. https://doi.org/10.1073/pnas.0901514106
Ryckman BJ, Roller RJ (2004) Herpes simplex virus type 1 primary envelopment: UL34 protein modification and the US3-UL34 catalytic relationship. J Virol 78(1):399–412
Scholtes LD, Yang K, Li LX, Baines JD (2010) The capsid protein encoded by U(L)17 of herpes simplex virus 1 interacts with tegument protein VP13/14. J Virol 84(15):7642–7650. https://doi.org/10.1128/JVI.00277-10
Schrag JD, Prasad BV, Rixon FJ, Chiu W (1989) Three-dimensional structure of the HSV1 nucleocapsid. Cell 56(4):651–660
Sheaffer AK, Newcomb WW, Brown JC, Gao M, Weller SK, Tenney DJ (2000) Evidence for controlled incorporation of herpes simplex virus type 1 UL26 protease into capsids. J Virol 74(15):6838–6848
Sheaffer AK, Newcomb WW, Gao M, Yu D, Weller SK, Brown JC, Tenney DJ (2001) Herpes simplex virus DNA cleavage and packaging proteins associate with the procapsid prior to its maturation. J Virol 75(2):687–698. https://doi.org/10.1128/JVI.75.2.687-698.2001
Smibert CA, Popova B, Xiao P, Capone JP, Smiley JR (1994) Herpes simplex virus VP16 forms a complex with the virion host shutoff protein vhs. J Virol 68(4):2339–2346
Smiley JR (2004) Herpes simplex virus virion host shutoff protein: immune evasion mediated by a viral RNase? J Virol 78(3):1063–1068
Spencer JV, Newcomb WW, Thomsen DR, Homa FL, Brown JC (1998) Assembly of the herpes simplex virus capsid: preformed triplexes bind to the nascent capsid. J Virol 72(5):3944–3951
Starkey JL, Han J, Chadha P, Marsh JA, Wills JW (2014) Elucidation of the block to herpes simplex virus egress in the absence of tegument protein UL16 reveals a novel interaction with VP22. J Virol 88(1):110–119. https://doi.org/10.1128/JVI.02555-13
Stevenson AJ, Morrison EE, Chaudhari R, Yang CC, Meredith DM (1997) Processing and intracellular localization of the herpes simplex virus type 1 proteinase. J Gen Virol 78(Pt 3):671–675. https://doi.org/10.1099/0022-1317-78-3-671
Svobodova S, Bell S, Crump CM (2012) Analysis of the interaction between the essential herpes simplex virus 1 tegument proteins VP16 and VP1/2. J Virol 86 (1):473–483. JVI.05981-11 [pii] https://doi.org/10.1128/JVI.05981-11
Szilagyi JF, Cunningham C (1991) Identification and characterization of a novel non-infectious herpes simplex virus-related particle. J Gen Virol 72(Pt 3):661–668
Taylor MP, Enquist LW (2015) Axonal spread of neuroinvasive viral infections. Trends Microbiol 23(5):283–288. https://doi.org/10.1016/j.tim.2015.01.002
Thurlow JK, Murphy M, Stow ND, Preston VG (2006) Herpes simplex virus type 1 DNA-packaging protein UL17 is required for efficient binding of UL25 to capsids. J Virol 80(5):2118–2126. https://doi.org/10.1128/JVI.80.5.2118-2126.2006
Tong L, Stow ND (2010) Analysis of herpes simplex virus type 1 DNA packaging signal mutations in the context of the viral genome. J Virol 84(1):321–329. https://doi.org/10.1128/JVI.01489-09
Toropova K, Huffman JB, Homa FL, Conway JF (2011) The herpes simplex virus 1 UL17 protein is the second constituent of the capsid vertex-specific component required for DNA packaging and retention. J Virol 85(15):7513–7522. https://doi.org/10.1128/JVI.00837-11
Trus BL, Newcomb WW, Cheng N, Cardone G, Marekov L, Homa FL, Brown JC, Steven AC (2007) Allosteric signaling and a nuclear exit strategy: binding of UL25/UL17 heterodimers to DNA-filled HSV-1 capsids. Mol Cell 26(4):479–489. https://doi.org/10.1016/j.molcel.2007.04.010
Vittone V, Diefenbach E, Triffett D, Douglas MW, Cunningham AL, Diefenbach RJ (2005) Determination of interactions between tegument proteins of herpes simplex virus type 1. J Virol 79 (15):9566–9571. 79/15/9566 [pii] https://doi.org/10.1128/JVI.79.15.9566-9571.2005
Votteler J, Sundquist WI (2013) Virus budding and the ESCRT pathway. Cell Host Microbe 14(3):232–241. https://doi.org/10.1016/j.chom.2013.08.012
Whiteley A, Bruun B, Minson T, Browne H (1999) Effects of targeting herpes simplex virus type 1 gD to the endoplasmic reticulum and trans-Golgi network. J Virol 73(11):9515–9520
Meckes DG, Jr., Wills JW (2007) Dynamic interactions of the UL16 tegument protein with the capsid of herpes simplex virus. J Virol 81 (23):13028–13036. doi:https://doi.org/10.1128/JVI.01306-07
Wills E, Mou F, Baines JD (2009) The U(L)31 and U(L)34 gene products of herpes simplex virus 1 are required for optimal localization of viral glycoproteins D and M to the inner nuclear membranes of infected cells. J Virol 83(10):4800–4809. https://doi.org/10.1128/JVI.02431-08
Wisner TW, Wright CC, Kato A, Kawaguchi Y, Mou F, Baines JD, Roller RJ, Johnson DC (2009) Herpesvirus gB-induced fusion between the virion envelope and outer nuclear membrane during virus egress is regulated by the viral US3 kinase. J Virol 83(7):3115–3126. https://doi.org/10.1128/JVI.01462-08
Wright CC, Wisner TW, Hannah BP, Eisenberg RJ, Cohen GH, Johnson DC (2009) Fusion between perinuclear virions and the outer nuclear membrane requires the fusogenic activity of herpes simplex virus gB. J Virol 83(22):11847–11856. https://doi.org/10.1128/JVI.01397-09
Yang K, Baines JD (2011) Selection of HSV capsids for envelopment involves interaction between capsid surface components pUL31, pUL17, and pUL25. Proc Natl Acad Sci U S A 108(34):14276–14281. https://doi.org/10.1073/pnas.1108564108
Zeev-Ben-Mordehai T, Weberruss M, Lorenz M, Cheleski J, Hellberg T, Whittle C, El Omari K, Vasishtan D, Dent KC, Harlos K, Franzke K, Hagen C, Klupp BG, Antonin W, Mettenleiter TC, Grunewald K (2015) Crystal structure of the herpesvirus nuclear egress complex provides insights into inner nuclear membrane remodeling. Cell Rep 13(12):2645–2652. https://doi.org/10.1016/j.celrep.2015.11.008
Zenner HL, Yoshimura S, Barr FA, Crump CM (2011) Analysis of Rab GTPase-activating proteins indicates that Rab1a/b and Rab43 are important for herpes simplex virus 1 secondary envelopment. J Virol 85 (16):8012–8021. JVI.00500-11 [pii] https://doi.org/10.1128/JVI.00500-11
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Crump, C. (2018). Virus Assembly and Egress of HSV. In: Kawaguchi, Y., Mori, Y., Kimura, H. (eds) Human Herpesviruses. Advances in Experimental Medicine and Biology, vol 1045. Springer, Singapore. https://doi.org/10.1007/978-981-10-7230-7_2
Download citation
DOI: https://doi.org/10.1007/978-981-10-7230-7_2
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-7229-1
Online ISBN: 978-981-10-7230-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)