Skip to main content

Nucleotide Excision Repair in Higher Eukaryotes: Mechanism of Primary Damage Recognition in Global Genome Repair

  • Chapter
  • First Online:
Genome Stability and Human Diseases

Part of the book series: Subcellular Biochemistry ((SCBI,volume 50))

Abstract

Nucleotide excision repair (NER) is one of the major DNA repair pathways in eukaryotic cells that counteract the formation of genetic damage. NER removes structurally diverse lesions such as pyrimidine dimers, arising upon UV irradiation, and bulky chemical adducts, arising upon exposure to carcinogens and some chemotherapeutic drugs. NER defects lead to severe diseases, including some forms of cancer. In view of the broad substrate specificity of NER, it is of interest to understand how a certain set of proteins recognizes various DNA lesions in the contest of a large excess of intact DNA. This review focuses on DNA damage recognition, the key and, as yet, most questionable step of NER. Understanding of mechanism of this step of NER may give a key contribution to study of similar processes of DNA damage recognition (base excision repair, mismatch repair) and regulation of assembly of various DNA repair machines. The major models of primary damage recognition and pre-incision complex assembly are considered. The model of a sequential loading of repair proteins on damaged DNA seems most reasonable in the light of the available data. The possible contribution of affinity labeling technique in study of this process is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AAF:

acetylaminofluorene

Antr:

anthracene

BER:

base excision repair

BHD:

beta-hairpin domain

CPD:

cyclobutane pyrimidine dimers

DBD:

DNA binding domain

dsDNA:

double-stranded DNA

ERCC1:

excision repair cross-complementing rodent repair deficiency, complementation group 1

FAP-dCTP:

exo-N-[2-N-(N-(4-azido-2,5-difluoro-3-chloropyridine-6-yl)-3-aminopropionyl)-aminoethyl]-deoxycytidine-triphosphate

FAP-dUTP:

5-{N-[N-(4-azido-2,5-difluoro-3 chloropyridine-6-yl)-3-aminopropionyl]-trans-3-aminopropenyl-1}-deoxyuridine-triphosphate

FAP:

fluoro-arylazido

Flu:

fluoresceinyl

CS:

Cockayne syndrome

GFP:

green fluorescent protein

GG-NER:

global genome repair

NER:

nucleotide excision repair

PCNA:

poliferating cell nuclear antigen

RPA:

replication protein A

ssDNA:

single-stranded DNA

TFIIH:

transcription factor IIH

TTD:

tichothiodistrophy

UbL:

ubiquitin-like

UV-DDB:

UV-damaged DNA-binding protein

UvrABC:

UV resistant protein ABC

XP:

xeroderma pigmentosum

References

  • Aboussekhra, A., Biggerstaff, M., Shivji, M. K., Vilpo, J. A., Moncollin, V., Podust, V. N., Protic, M., Hubscher, U., Egly, J. M., and Wood, R. D. (1995) Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell, 80, 681–859.

    Google Scholar 

  • Araki, M., Masutani, C., Takemura, M., Uchida, A., Sugasawa, K., Kondoh, J., Ohkuma, Y., and Hanaoka, F. (2001) Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J Bio Chem, 276, 18665–18672.

    CAS  Google Scholar 

  • Araujo, S. J., Tirode, F., Coin, F., Pospiech, H., Syvaoja, J. E., Stucki, M., Hubscher, U., Egly, J. M., and Wood, R. D. (2000) Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of Tfiih, and modulation by CAK. Genes Dev, 14, 349–359.

    CAS  PubMed  Google Scholar 

  • Batty, D., Rapic’-Otrin, V., Levine, A. S., and Wood, R. D. (2000) Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites. J Mol Biol, 300, 275–290.

    CAS  PubMed  Google Scholar 

  • Berneburg, M. and Lehman, A. R. (2001) Xeroderma pigmentosum and related disorders: defects in DNA repair and transcription. Adv Genet, 43, 71–102.

    CAS  PubMed  Google Scholar 

  • Blackwell, L. J., Borowiec, J. A., and Masrangelo, I. A. (1996) Single-stranded-DNA binding alters human replication protein A structure and facilitates interaction with DNA-dependent protein kinase. Mol Cell Biol, 16, 4798–4807.

    CAS  PubMed  Google Scholar 

  • Blagoev, K. B., Alexandrov, B. S., Goodwin, E. H., and Bishop, A. R. (2006) Ultraviolet light induced changes in DNA dynamics may enhance TT-dimer recognition. DNA Repair, 5, 863–867.

    CAS  PubMed  Google Scholar 

  • Bochkareva, E., Korolev, S., Lees-Miller, S. P., and Bochkarev, A. (2002) Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA. EMBO J, 21, 1855–1863.

    CAS  PubMed  Google Scholar 

  • Bomgarden, R. D., Lupardus, P. J., Soni, D. V., Yee, M. C., Ford, J. M., and Cimprich, K. A. (2006) Opposing effects of the UV lesion repair protein XPA and UV bypass polymerase eta on ATR checkpoint signaling. EMBO J, 25, 2605–2614.

    CAS  PubMed  Google Scholar 

  • Bootsma, D., Kraemer, K. H., Cleaver, J. E., and Hoeijmakers, J. H. (1998) Nucleotide excision repair syndromes: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. In: Vogelstein, B. and Kinzler, K. W. (Eds.) The Genetic Basis of Human Cancer, McGraw-Hill Book Co, New York, pp. 245–274.

    Google Scholar 

  • Buterin, T., Meyer, C., Giese, B., and Naegeli, H. (2005) DNA quality control by conformational readout on the undamaged strand of the double helix. Chem Biol, 12, 913–922.

    CAS  PubMed  Google Scholar 

  • Camenisch, U., Dip, R., Schumacher, S. B., Schuler, B., and Naegeli, H. (2006) Recognition of helical kinks by xeroderma pigmentosum group A protein triggers DNA excision repair. Nat Struct Mol Biol, 13, 278–284.

    CAS  PubMed  Google Scholar 

  • Coin, F., Oksenych, V., Mocquet, V., Groh, S., Blattner, C., and Egly, J. M. (2008) Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol Cell, 31, 9–20.

    CAS  PubMed  Google Scholar 

  • de Laat, W. L., Appeldorn, E., Jaspers, N. G., and Hoeijmakers, J. H. (1998a) DNA structural elements required for ERCC1-XPF endonuclease activity. J Biol Chem, 273, 7835–7842.

    PubMed  Google Scholar 

  • de Laat, W. L., Appeldoorn, E., Sugasawa, K., Weterings, E., Jaspers, N. G., and Hoeijmakers, J. H. (1998b) DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev, 12, 2598–2609.

    PubMed  Google Scholar 

  • Dellavecchia, M. J., Croteau, D. L., Skorvaga, M., Dezhurov, S. V., Lavrik, O. I., and van Houten, B. (2004) Analyzing the handoff of DNA from UvrA to UvrB utilizing DNA-protein photoaffinity labeling. J Biol Chem, 279, 45245–45256.

    CAS  PubMed  Google Scholar 

  • D’Errico, M., Parlanti, E., Teson, M., de Jesus, B. M., Degan, P., Calcagnile, A., Jaruga, P., Bjoras, M., Crescenzi, M., Pedrini, A. M., Egly, J. M., Zambruno, G., Stefanini, M., Dizdaroglu, M., and Dogliotti, E. (2006) New functions of XPC in the protection of human skin cells from oxidative damage. EMBO J, 25, 4305–4315.

    PubMed  Google Scholar 

  • Evans, E., Moggs, J. G., Hwang, J. R., Egly, J. M., and Wood, R. D. (1997) Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J, 16, 6559–6573.

    CAS  PubMed  Google Scholar 

  • Fanning, E., Klimovich, V., and Nager, A. R. (2006) A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res, 34, 4126–4137.

    CAS  PubMed  Google Scholar 

  • Fitch, M. E., Cross, I. V., Turner, S. J., Adimoolam, S., Lin, C. X., Williams, K. G., and Ford, J. M. (2003a) The DDB2 nucleotide excision repair gene product p48 enhances global genomic repair in p53 deficient human fibroblasts. DNA Repair, 2, 819–826.

    CAS  PubMed  Google Scholar 

  • Fitch, M. E., Nakajima, S., Yasui, S., and Ford, J. M. (2003b) In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product. J Biol Chem, 278, 46906–46910.

    CAS  PubMed  Google Scholar 

  • Fujiwara, Y., Masutani, C., Mizukoshi, T., Kondo, J., Hanaoka, F., and Iwai, S. (1999) Characterization of DNA recognition by the human UV-damaged DNA-binding protein. J Biol Chem, 274, 20027–20033.

    CAS  PubMed  Google Scholar 

  • He, Z., Henricksen, L. A., Wold, M. S., and Ingles, C. J. (1995) RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature, 374, 566–569.

    CAS  PubMed  Google Scholar 

  • Heflich, R. H. and Neft, R. E. (1994) Genetic toxicity of 2-acetylaminofluorene, 2-aminofluorene and some of their metabolites and model metabolites. Mutat Res, 318, 73–174.

    CAS  PubMed  Google Scholar 

  • Henricksen, L. A., Umbricht, C. B., and Wold, M. S. (1994) Recombinant replication protein A: Expression, complex formation, and functional characterization. J Biol Chem, 269, 11121–11132.

    CAS  PubMed  Google Scholar 

  • Hermanson-Miller, I. L. and Turchi, J. J. (2002) Strand-specific binding of RPA and XPA to damaged duplex DNA. Biochemistry, 41, 2402–2408.

    CAS  PubMed  Google Scholar 

  • Hey, T., Lipps, G., and Krauss, G. (2001) Binding of XPA and RPA to damaged DNA investigated by fluorescence anisotropy. Biochemistry, 40, 2901–2910.

    CAS  PubMed  Google Scholar 

  • Hey, T., Lipps, G., Sugasawa, K., Iwai, S., Hanaoka, F., and Krauss, G. (2002) The XPC-HR23B complex displays high affinity and specificity for damaged DNA in a true-equilibrium fluorescence assay. Biochemistry, 41, 6583–6587.

    CAS  PubMed  Google Scholar 

  • Hoeijmakers, J. H. (2001) Genome maintenance mechanisms for preventing cancer. Nature, 411, 366–374.

    CAS  PubMed  Google Scholar 

  • Hoogstraten, D., Nigg, A. L., Heath, H., Mullenders, L. H., van Driel, R., Hoeijmakers, J. H., Vermeulen, W., and Houtsmuller, A. B. (2002) Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. Mol Cell, 10, 1163–1174.

    CAS  PubMed  Google Scholar 

  • Hoogstraten, D., Bergink, S., Verbiest, V. H., Luijsterburg, M. S., Geverts, B., Raams, A., Dinant, C., Hoeijmakers, J. H., Vermeulen, W., and Houtsmuller, A. B. (2008) Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC. J Cell Sci, 121, 2850–2859.

    CAS  PubMed  Google Scholar 

  • Houtsmuller, A. B., Rademakers, S., Nigg, A. L., Hoogstraten, D., Hoeijmakers, J. H., and Vermeulen, W. (1999) Action of DNA repair endonuclease ERCC1/XPF in living cells. Science, 284, 958–961.

    CAS  PubMed  Google Scholar 

  • Geacintov, N. E., Broyde, S., Buterin, T., Naegeli, H., Wu, M., Yan, S., and Patel, D. J. (2002) Thermodynamic and structural factors in the removal of bulky DNA adducts by the nucleotide excision repair machinery. Biopolymers, 65, 202–210.

    CAS  PubMed  Google Scholar 

  • Gillet, L. C., Alzeer, J., and Schärer, O. D. (2005) Single-site specific incorporation of N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF) into oligonucleotides using modified ‘ultra-mild’ DNA synthesis. Nucleic Acids Res, 33, 1961–1969.

    CAS  PubMed  Google Scholar 

  • Gillet, L. C. and Schärer, O. D. (2006) Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev, 106, 253–276.

    CAS  PubMed  Google Scholar 

  • Gomes, X. V. and Burgers, P. M. (2001) ATP utilization by yeast replication factor C. I. ATP-mediated interaction with DNA and with proliferating cell nuclear antigen. J Biol Chem, 276, 34768–34775.

    CAS  PubMed  Google Scholar 

  • Groisman, R., Polanowska, J., Kuraoka, I., Sawada, J., Saijo, M., Drapkin, R., Kisselev, A. F., Tanaka, K., and Nakatani, Y. (2003) The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell, 113, 357–367.

    CAS  PubMed  Google Scholar 

  • Gunz, D., Hess, M. T., and Naegeli, H. (1996) Recognition of DNA adducts by human nucleotide excision repair. Evidence for a thermodynamic probing mechanism. J Biol Chem, 271, 25089–25098.

    CAS  PubMed  Google Scholar 

  • Janicijevic, A., Sugasawa, K., Shimizu, Y., Hanaoka, F., Wijgers, N., Djurica, M., Hoeijmakers, J. H., and Wyman, C. (2003) DNA bending by the human damage recognition complex XPC-HR23B. DNA Repair, 2, 325–336.

    CAS  PubMed  Google Scholar 

  • Kapetanaki, M. G., Guerrero-Santoro, J., Bisi, D. C., Hsieh, C. L., Rapić-Otrin, V., and Levine, A. S. (2006) The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc Natl Acad Sci USA, 103, 2588–2593.

    CAS  PubMed  Google Scholar 

  • Keeney, S., Chang, G. J., and Linn, S. (1993) Characterization of a human DNA damage binding protein implicated in xeroderma pigmentosum E. J Biol Chem, 268, 21293–21300.

    CAS  PubMed  Google Scholar 

  • Kesseler, K. J., Kaufmann, W. K., Reardon, J. T., Elston, T. C., and Sancar, A. (2007) A mathematical model for human nucleotide excision repair: damage recognition by random order assembly and kinetic proofreading. J Theor Biol, 249, 361–375.

    CAS  PubMed  Google Scholar 

  • Khodyreva, S. N. and Lavrik, O. I. (2005) Photoaffinity labeling technique for studying DNA replication and DNA repair. Curr Med Chem, 12, 641–655.

    CAS  PubMed  Google Scholar 

  • Kino, K., Shimizu, Y., Sugasawa, K., Sugiyama, H., and Hanaoka, F. (2004) Nucleotide excision repair of 5-formyluracil in vitro is enhanced by the presence of mismatched bases. Biochemistry, 43, 2682–2687.

    CAS  PubMed  Google Scholar 

  • Kolpashchikov, D. M., Weisshart, K., Nasheuer, H. P., Khodyreva, S. N., Fanning, E., Favre, A., and Lavrik, O. I. (1999) Interaction of the p70 subunit of RPA with a DNA template directs p32 to the 3’-end of nascent DNA. FEBS Lett, 450, 131–134.

    CAS  PubMed  Google Scholar 

  • Kolpashchikov, D. M., Khodyreva, S. N., Khlimankov, D. Y., Wold, M. S., Favre, A., and Lavrik, O. I. (2001) Polarity of human replication protein A binding to DNA. Nucleic Acids Res, 29, 373–379.

    CAS  PubMed  Google Scholar 

  • Kong, S. E. and Svejstrup, J. Q. (2002) Incision of a 1,3-intrastrand d(GpTpG)-cisplatin adduct by nucleotide excision repair proteins from yeast. DNA Repair, 1, 731–741.

    CAS  PubMed  Google Scholar 

  • Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Petruseva, I. O., Silnikov, V. N., Zatsepin, T. S., Oretskaya, T. S., Schärer, O. D., and Lavrik, O. I. (2008) Interaction of nucleotide excision repair factors XPC-HR23B, XPA, and RPA with damaged DNA. Biochemistry (Mosc), 73, 886–896.

    CAS  Google Scholar 

  • Kusumoto, R., Masutani, C., Sugasawa, K., Iwai, S., Araki, M., Uchida, A., Mizukoshi, T., and Hanaoka, F. (2001) Diversity of the damage recognition step in the global genomic nucleotide excision repair in vitro. Mutat Res, 485, 219–227.

    CAS  PubMed  Google Scholar 

  • Lavrik, O. I., Nasheuer, H. P., Weisshart, K., Wold, M. S., Prasad, R., Beard, W. A., Wilson, S. H., and Favre, A. (1998) Subunits of human replication protein A are crosslinked by photoreactive primers synthesized by DNA polymerases. Nucleic Acids Res, 26, 602–607.

    CAS  PubMed  Google Scholar 

  • Lavrik, O. I., Kolpashchikov, D. M., Weisshart, K., Nasheuer, H. P., Khodyreva, S. N., and Favre, A. (1999) RPA subunit arrangement near the 3’-end of the primer is modulated by the length of the template strand and cooperative protein interactions. Nucleic Acids Res, 27, 4235–4240.

    CAS  PubMed  Google Scholar 

  • Lee, J. H., Park, C. J., Arunkumar, A. I., Chazin, W. J., and Choi, B. S. (2003) NMR study on the interaction between RPA and DNA decamer containing cis-syn cyclobutane pyrimidine dimer in the presence of XPA: implication for damage verification and strand-specific dual incision in nucleotide excision repair. Nucleic Acids Res, 31, 4747–4754.

    CAS  PubMed  Google Scholar 

  • Li, L., Elledge, S. J., Peterson, C. A., Bales, E. S., and Legerski, R. J. (1994) Specific association between the human DNA repair proteins XPA and ERCC1. Proc Natl Acad Sci USA, 91, 5012–5016.

    CAS  PubMed  Google Scholar 

  • Li, L., Lu, X., Peterson, C. A., and Legerski, R. J. (1995) An interaction between the DNA repair factor XPA and replication protein A appears essential for nucleotide excision repair. Mol Cell Biol, 15, 5396–5402.

    CAS  PubMed  Google Scholar 

  • Lindahl, T. and Wood, R. D. (1999) Quality control by DNA repair. Science, 286, 1897–1905.

    CAS  PubMed  Google Scholar 

  • Liu, H., Rudolf, J., Johnson, K. A., McMahon, S. A., Oke, M., Carter, L., McRobbie, A. M., Brown, S. E., Naismith, J. H., and White, M. F. (2008) Structure of the DNA repair helicase XPD. Cell, 133, 801–812.

    CAS  PubMed  Google Scholar 

  • Maillard, O., Camenisch, U., Clement, F. C., Blagoev, K. B., and Naegeli, H. (2007a) DNA repair triggered by sensors of helical dynamics. Trends Biochem Sci, 32, 494–499.

    CAS  PubMed  Google Scholar 

  • Maillard, O., Solyom, S., and Naegeli, H. (2007b) An aromatic sensor with aversion to damaged strands confers versatility to DNA repair. PLoS Biol, 5, e79.

    PubMed  Google Scholar 

  • Maillard, O., Camenisch, U., Blagoev, K. B., and Naegeli, H. (2008) Versatile protection from mutagenic DNA lesions conferred by bipartite recognition in nucleotide excision repair. Mutat Res, 658, 271–286.

    CAS  PubMed  Google Scholar 

  • Maltseva, E. A., Rechkunova, N. I., Petruseva, I. O., Silnikov, V. N., Vermeulen, W., and Lavrik, O. I. (2006) Interaction of nucleotide excision repair factors RPA and XPA with DNA containing bulky photoreactive groups imitating damages. Biochemistry (Mosc), 71, 270–278.

    CAS  Google Scholar 

  • Maltseva, E. A., Rechkunova, N. I., Gillet, L. C., Petruseva, I. O., Schärer, O. D., and Lavrik, O. I. (2007) Crosslinking of the NER damage recognition proteins XPC-HR23b, XPA and RPA to photoreactive probes that mimic DNA damages. Biochim Biophys Acta, 1770, 781–789.

    CAS  PubMed  Google Scholar 

  • Maltseva, E. A., Rechkunova, N. I., Petruseva, I. O., Vermeulen, W., Schärer, O. D., and Lavrik, O. I. (2008) Crosslinking of nucleotide excision repair proteins with DNA containing photoreactive damages. Bioorg Chem, 36, 77–84.

    CAS  PubMed  Google Scholar 

  • Masutani, C., Araki, M., Sugasawa, K., van der Spek, P. J., Yamada, A., Uchida, A., Maekawa, T., Bootsma, D., Hoeijmakers, J. H., and Hanaoka, F. (1997) Identification and characterization of XPC-binding domain of hHR23B. Mol Cell Biol, 17, 6915–6923.

    CAS  PubMed  Google Scholar 

  • Meisenheimer, K. M. and Koch, T. H. (1997) Photocross-linking of nucleic acids to associated proteins. Crit Rev Biochem Mol Biol, 32, 101–140.

    CAS  PubMed  Google Scholar 

  • Miao, F., Bouziane, M., Dammann, R., Masutani, C., Hanaoka, F., Pfeifer, G., and O’Connor, T. R. (2000) 3-Methyladenine-DNA glycosylase (MPG protein) interacts with human RAD23 proteins. J Biol Chem, 275, 28433–28438.

    CAS  PubMed  Google Scholar 

  • Min, J. H. and Pavletich, N. P. (2007) Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature, 449, 570–575.

    CAS  PubMed  Google Scholar 

  • Missura, M., Buterin, T., Hindges, R., Hübscher, U., Kaspárková, J., Brabec, V., and Naegeli, H. (2001) Double-check probing of DNA bending and unwinding by XPA-RPA: an architectural function in DNA repair. EMBO J, 20, 3554–3564.

    CAS  PubMed  Google Scholar 

  • Moser, J., Volker, M., Kool, H., Alekseev, S., Vrieling, H., Yasui, A., van Zeeland, A. A., and Mullenders, L. H. (2005) The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions. DNA Repair, 4, 571–582.

    CAS  PubMed  Google Scholar 

  • Mocquet, V., Kropachev, K., Kolbanovskiy, M., Kolbanovskiy, A., Tapias, A., Cai, Y., Broyde, S., Geacintov, N. E., and Egly, J. M. (2007) The human DNA repair factor XPC-HR23B distinguishes stereoisomeric benzo[a]pyrenyl-DNA lesions. EMBO J, 26, 2923–2932.

    CAS  PubMed  Google Scholar 

  • Mu, D., Park, C. H., Matsunaga, T., Hsu, D. S., Reardon, J. T., and Sancar, A. (1995) Reconstitution of human DNA repair excision nuclease in a highly defined system. J Biol Chem, 270, 2415–2418.

    CAS  PubMed  Google Scholar 

  • Mu, D., Hsu, D. S., and Sancar, A. (1996) Reaction mechanism of human DNA repair excision nuclease. J Biol Chem, 271, 8285–8294.

    CAS  PubMed  Google Scholar 

  • Nakano, T., Katafuchi, A., Shimizu, R., Terato, H., Suzuki, T., Tauchi, H., Makino, K., Skorvaga, M., van Houten, B., and Ide, H. (2005) Repair activity of base and nucleotide excision repair enzymes for guanine lesions induced by nitrosative stress. Nucleic Acids Res, 33, 2181–2191.

    CAS  PubMed  Google Scholar 

  • Nasheuer, H. P., Smith, R., Bauerschmidt, C., Grosse, F., and Weisshart, K. (2002) Initiation of eukaryotic DNA replication: regulation and mechanisms. Prog Nucleic Acid Res Mol Biol, 72, 41–94.

    CAS  PubMed  Google Scholar 

  • Nasheuer, H. P., Pospiech, H., and Syväoja, J. (2007) Progress towards the anatomy of the eukaryotic DNA replication fork. In: Lankenau, D. H. (Ed.) Genome Integrity: Facets and Perspectives, Genome Dynamics & Stability, Vol. 1, Springer, Berlin-Heidelberg-NewYork, pp. 27–68.

    Google Scholar 

  • Ng, J. M., Vermeulen, W., van der Horst, G. T., Bergink, S., Sugasawa, K., Vrieling, H., and Hoeijmakers, J. H. (2003) A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev, 17, 1630–1645.

    CAS  PubMed  Google Scholar 

  • Nishi, R., Okuda, Y., Watanabe, E., Mori, T., Iwai, S., Masutani, C., Sugasawa, K., and Hanaoka, F. (2005) Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Mol Cell Biol, 25, 5664–5674.

    CAS  PubMed  Google Scholar 

  • Park, C. H., Mu, D., Reardon, J. T., and Sancar, A. (1995) The general transcription-repair factor TFIIH is recruited to the excision repair complex by the XPA protein independent of the TFIIE transcription factor. J Biol Chem, 270, 4896–4902.

    CAS  PubMed  Google Scholar 

  • Patrick, S. M. and Turchi, J. J. (2002) Xeroderma pigmentosum complementation group A protein (XPA) modulates RPA-DNA interactions via enhanced complex stability and inhibition of strand separation activity. J Biol Chem, 277, 16096–16101.

    CAS  PubMed  Google Scholar 

  • Petruseva, I. O., Tikhanovich, I. S., Chelobanov, B. P., and Lavrik, O. I. (2008) RPA repair recognition of DNA containing pyrimidines bearing bulky adducts. J Mol Recog, 21, 154–162.

    CAS  Google Scholar 

  • Pestryakov, P. E., Weisshart, K., Schlott, B., Khodyreva, S. N., Kremmer, E., Grosse, F., Lavrik, O. I., and Nasheuer, H. P. (2003) Human replication protein A: The C-terminal RPA70 and the central RPA32 domains are involved in the interactions with the 3’-end of a primer-template DNA. J Biol Chem, 278, 17515–17524.

    CAS  PubMed  Google Scholar 

  • Pestryakov, P. E. and Lavrik, O. I. (2008) Mechanisms of Single-stranded DNA-binding protein functioning in cellular DNA metabolism. Biochemistry (Mosc), 73, 1388–1404.

    CAS  Google Scholar 

  • Pestryakov, P. E., Krasikova, Y. S., Petruseva, I. O., Khodyreva, S. N., and Lavrik, O. I. (2007) The role of p14 subunit of replication protein A in binding to single-stranded DNA. Dokl Biochem Biophys, 412, 4–7.

    CAS  PubMed  Google Scholar 

  • Rademakers, S., Volker, M., Hoogstraten, D., Nigg, A. L., Moné, M. J., van Zeeland, A. A., Hoeijmakers, J. H., Houtsmuller, A. B., and Vermeulen, W. (2003) Xeroderma pigmentosum group A protein loads as a separate factor onto DNA lesions. Mol Cell Biol, 23, 5755–5767.

    CAS  PubMed  Google Scholar 

  • Rapic Otrin, V., McLenigan, M. P., Bisi, D. C., Gonzalez, M., and Levine, A. S. (2002) Sequential binding of UV DNA damage binding factor and degradation of the p48 subunit as early events after UV irradiation. Nucleic Acids Res, 30, 2588–2598.

    CAS  PubMed  Google Scholar 

  • Rapic Otrin, V., Navazza, V., Nardo, T., Botta, E., McLenigan, M. P., Bisi, D. C., Levine, A. S., and Stefanini, M. (2003) True XP group E patients have a defective UV-damaged DNA binding protein complex and mutations in DDB2 which reveal the functional domains of its p48 product. Hum Mol Genet, 12, 1507–1522.

    CAS  PubMed  Google Scholar 

  • Reardon, J. T. and Sancar, A. (2002) Molecular anatomy of the human excision nuclease assembled at sites of DNA damage. Mol Cell Biol, 22, 5938–5945.

    CAS  PubMed  Google Scholar 

  • Reardon, J. T. and Sancar, A. (2003) Recognition and repair of the cyclobutane thymine dimer, a major cause of skin cancers, by the human excision nuclease. Genes Dev, 17, 2539–2551.

    CAS  PubMed  Google Scholar 

  • Riedl, T., Hanaoka, F., and Egly, J. M. (2003) The comings and goings of nucleotide excision repair factors on damaged DNA. EMBO J, 22, 5293–5303.

    CAS  PubMed  Google Scholar 

  • Reardon, J. T., Mu, D., and Sancar, A. (1996) Overproduction, purification, and characterization of the XPC subunit of the human DNA repair excision nuclease. J Biol Chem, 271, 19451–19456.

    CAS  PubMed  Google Scholar 

  • Salas, T. R., Petruseva, I., Lavrik, O., and Saintomé, C. (2009) Evidence for direct contact between the RPA3 subunit of the human replication protein A and single-stranded DNA. Nucleic Acids Res, 37, 38–46.

    CAS  PubMed  Google Scholar 

  • Sancar, A. (1996) DNA excision repair. Annu Rev Biochem, 65, 43–81.

    CAS  PubMed  Google Scholar 

  • Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K., and Linn, S. (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem, 73, 39–85.

    CAS  PubMed  Google Scholar 

  • Schärer, O. D. (2003) Chemistry and biology of DNA repair. Angew Chem Int Ed Engl, 42, 2946–2974.

    PubMed  Google Scholar 

  • Schweizer, U., Hey, T., Lipps, G., and Krauss, G. (1999) Photocrosslinking locates a binding site for the large subunit of human replication protein A to the damaged strand of cisplatin-modified DNA. Nucleic Acids Res, 27, 3183–3189.

    CAS  PubMed  Google Scholar 

  • Shimizu, Y., Iwai, S., Hanaoka, F., and Sugasawa, K. (2003) Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase. EMBO J, 22, 164–173.

    CAS  PubMed  Google Scholar 

  • Shivji, M. K., Moggs, J. G., Kuraoka, I., and Wood, R. D. (1999) Dual-incision assays for nucleotide excision repair using DNA with a lesion at a specific site. Methods Mol Biol, 113, 373–392.

    CAS  PubMed  Google Scholar 

  • Shuck, S. C., Short, E. A., and Turchi, J. J. (2008) Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res, 18, 64–72.

    CAS  PubMed  Google Scholar 

  • Solimando, L., Luijsterburg, M. S., Vecchio, L., Vermeulen, W., van Driel, R., and Fakan, S. (2009) Spatial organization of nucleotide excision repair proteins after UV-induced DNA damage in the human cell nucleus. J Cell Sci, 122, 83–91.

    CAS  PubMed  Google Scholar 

  • Sugasawa, K. (2008) Xeroderma pigmentosum genes: functions inside and outside DNA repair. Carcinogenesis, 29, 455–465.

    CAS  PubMed  Google Scholar 

  • Sugasawa, K., Masutani, C., Uchida, A., Maekawa, T., van der Spek, P. J., Bootsma, D., Hoeijmakers, J. H., and Hanaoka, F. (1996) HHR23b, a human Rad23 homolog, stimulates XPC protein in nucleotide excision repair in vitro. Mol Cell Biol, 16, 4852–4861.

    CAS  PubMed  Google Scholar 

  • Sugasawa, K., Ng, J. M., Masutani, C., Maekawa, T., Uchida, A., van der Spek, P. J., Eker, A. P., Rademakers, S., Visser, C., Aboussekhra, A., Wood, R. D., Hanaoka, F., Bootsma, D., and Hoeijmakers, J. H. (1997) Two human homologs of Rad23 are functionally interchangeable in complex formation and stimulation of XPC repair activity. Mol Cell Biol, 17, 6924–6931.

    CAS  PubMed  Google Scholar 

  • Sugasawa, K., Ng, J. M., Masutani, C., Iwai, S., van der Spek, P. J., Eker, A. P., Hanaoka, F., Bootsma, D., and Hoeijmakers, J. H. (1998) Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell, 2, 223–232.

    CAS  PubMed  Google Scholar 

  • Sugasawa, K., Okamoto, T., Shimizu, Y., Masutani, C., Iwai, S., and Hanaoka, F. (2001) A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev, 15, 507–521.

    CAS  PubMed  Google Scholar 

  • Sugasawa, K., Shimizu, Y., Iwai, S., and Hanaoka, F. (2002) A molecular mechanism for DNA damage recognition by the xeroderma pigmentosum group C protein complex. DNA Repair, 1, 95–107.

    CAS  PubMed  Google Scholar 

  • Sugasawa, K., Okuda, Y., Saijo, M., Nishi, R., Matsuda, N., Chu, G., Mori, T., Iwai, S., Tanaka, K., and Hanaoka, F. (2005) UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell, 121, 387–400.

    CAS  PubMed  Google Scholar 

  • Sweder, K. S. and Hanawalt, P. C. (1993) Transcription-coupled DNA repair. Science, 262, 439–440.

    CAS  PubMed  Google Scholar 

  • van der Spek, P. J., Eker, A., Rademakers, S., Visser, C., Sugasawa, K., Masutani, C., Hanaoka, F., Bootsma, D., and Hoeijmakers, J. H. (1996) XPC and human homologs of RAD23: intracellular localization and relationship to other nucleotide excision repair complexes. Nucleic Acids Res, 24, 2551–2559.

    PubMed  Google Scholar 

  • Volker, M., Mone, M. J., Karmakar, P., van Hoffen, A., Schul, W., Vermeulen, W., Hoeijmakers, J. H., van Driel, R., van Zeeland, A. A., and Mullenders, L. H. (2001) Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell, 8, 213–224.

    CAS  PubMed  Google Scholar 

  • Wakasugi, M. and Sancar, A. (1998) Assembly, subunit composition, and footprint of human DNA repair excision nuclease. Proc Natl Acad Sci USA, 95, 6669–6674.

    CAS  PubMed  Google Scholar 

  • Wakasugi, M. and Sancar, A. (1999) Order of assembly of human DNA repair excision nuclease. J Biol Chem, 274, 18759–18768.

    CAS  PubMed  Google Scholar 

  • Wakasugi, M., Shimizu, M., Morioka, H., Linn, S., Nikaido, O., and Matsunaga, T. (2001) Damaged DNA-binding protein DDB stimulates the excision of cyclobutane pyrimidine dimers in vitro in concert with XPA and replication protein A. J Biol Chem, 276, 15434–15440.

    CAS  PubMed  Google Scholar 

  • Wakasugi, M., Kawashima, A., Morioka, H., Linn, S., Sancar, A., Mori, T., Nikaido, O., and Matsunaga, T. (2002) DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair. J Biol Chem, 277, 1637–1640.

    CAS  PubMed  Google Scholar 

  • Wang, M., Mahrenholz, A., and Lee, S. H. (2000) RPA stabilizes the XPA-damaged DNA complex through protein-protein interaction. Biochemistry, 39, 6433–6439.

    CAS  PubMed  Google Scholar 

  • Wang, Q. E., Zhu, Q., Wani, G., Chen, J., and Wani, A. A. (2004) UV radiation-induced XPC translocation within chromatin is mediated by damaged-DNA binding protein, DDB2. Carcinogenesis, 25, 1033–1043.

    CAS  PubMed  Google Scholar 

  • Wang, H., Zhai, L., Xu, J., Joo, H. Y., Jackson, S., Erdjument-Bromage, H., Tempst, P., Xiong, Y., and Zhang, Y. (2006) Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell, 22, 383–394.

    PubMed  Google Scholar 

  • Weisshart, K., Pestryakov, P., Smith, R. W., Hartmann, H., Kremmer, E., Lavrik, O., and Nasheuer, H. P. (2004) Coordinated regulation of replication protein A activities by its subunits p14 and p32. J Biol Chem, 279, 35368–35376.

    CAS  PubMed  Google Scholar 

  • Wold, M. S. (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem, 66, 61–92.

    CAS  PubMed  Google Scholar 

  • Wood, R. D. (1996) DNA repair in eukaryotes. Annu Rev Biochem, 65, 135–167.

    CAS  PubMed  Google Scholar 

  • Wood, R. D., Mitchell, M., Sgouros, J., and Lindahl, T. (2001) Human DNA repair genes. Science, 291, 1284–1289.

    CAS  PubMed  Google Scholar 

  • Wu, X., Shel, S. M., Yan, Z., and Zou, Y. (2006) Phosphorylation of nucleotide excision repair factor xeroderma pigmentosum group A by ataxia telangiectasia mutated and Rad3-relateddependent checkpoint pathway promotes cell survival in response to UV irradiation. Cancer Res, 66, 2997–3005.

    CAS  PubMed  Google Scholar 

  • Wu, X., Shell, S. M., Liu, Y., and Zou, Y. (2007) ATR-dependent checkpoint modulates XPA nuclear import in response to UV irradiation. Oncogene, 26, 757–764.

    CAS  PubMed  Google Scholar 

  • Yang, Z. G., Liu, Y., Mao, L. Y., Zhang, J. T., and Zou, Y. (2002) Dimerization of human XPA and formation of XPA2-RPA protein complex biochemistry. Biochemistry, 41, 13012–13020.

    CAS  PubMed  Google Scholar 

  • Yang, Z., Roginskaya, M., Colis, L. C., Basu, A. K., Shell, S. M., Liu, Y., Musich, P. R., Harris, C. M., Harris, T. M., and Zou, Y. (2006) Specific and efficient binding of xeroderma pigmentosum complementation group A to double-strand/single-strand DNA junctions with 3’- and/or 5’-ssDNA branches. Biochemistry, 45, 15921–15930.

    CAS  PubMed  Google Scholar 

  • Yokoi, M., Masutani, C., Maekawa, T., Sugasawa, K., Ohkuma, Y., and Hanaoka, F. (2000) The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. J Biol Chem, 275, 9870–9875.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (project nos. 08-04-91202, 09-04-00479), INTAS-SBRAS (grant no. 06-1000013-9210), and by grants from program “Leading Scientific Schools” (652.2008) and RAS program on Molecular and Cellular Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O.I. Lavrik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rechkunova, N., Lavrik, O. (2010). Nucleotide Excision Repair in Higher Eukaryotes: Mechanism of Primary Damage Recognition in Global Genome Repair. In: Nasheuer, HP. (eds) Genome Stability and Human Diseases. Subcellular Biochemistry, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3471-7_13

Download citation

Publish with us

Policies and ethics