Skip to main content

The Structure and Function of Retroviral Long Terminal Repeats

  • Conference paper
Retroviruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 157))

Abstract

During the natural course of reverse transcription, sequences from the 5′ (R-U5) and 3′ (U3-R) ends of retroviral genomic RNA are fused through the direct repeat sequence, R, and duplicated to form a linear duplex molecule with long terminal repeats (LTRs). Subsequent insertion of this molecule into a site within the chromosomal DNA of an infected host cell allows the viral DNA to function as a template for the transcription of new viral RNA molecules. Synthesis of these molecules is catalyzed by the host RNA polymerase II and initiates at the U3-R border. The 3′-ends of these molecules are generated by cleavage and polyA addition at the R-U5 boundary. A direct consequence of this pathway is that sequences immediately upstream from the transcription start are virus-coded and derive from the 3′-end of viral RNA. By analogy with the structures of cellular pol II promoters, elements which instruct the host polymerase when and where to initiate viral RNA synthesis should lie within these upstream sequences. The central role in viral replication of this host-dependent transcription step and the broad spectrum of host cell-specific transcription patterns mean that many biological properties of retroviruses will be determined by sequences within the LTR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahmad N, Venkatesan S (1988) Nef protein of HIV-1 is a transcriptional repressor of HIV-1 LTR. Science 241: 1481–1485

    PubMed  CAS  Google Scholar 

  • Akroyd J, Fincham VJ, Green AR, Levantis P, Searle S, Wyke JA (1987) Transcription of Rous sarcoma proviruses in rat cells is determined by chromosomal position effects that fluctuate and can operate over long distances. Oncogene 1: 347–354

    PubMed  CAS  Google Scholar 

  • Altman R, Harrich D, Garcia JA, Gaynor RB (1988) Human T-cell leukemia virus types I and II exhibit different DNase I protection patterns. J Virol 62: 1339–1346

    PubMed  CAS  Google Scholar 

  • Arrigo S, Yun M, Beemon K (1987) Acis-acting regulatory elements within gag genes of avian retroviruses. Mol Cell Biol 7: 388–397

    PubMed  CAS  Google Scholar 

  • Arya SK (1988) Human and simian immunodeficiency retroviruses: activation and differential transactivation of gene expression. AIDS Res Hum Retroviruses 4: 175–186

    PubMed  CAS  Google Scholar 

  • Arya SK, Gallo RC (1988) Human immunodeficiency virus type 2 long terminal repeat: analysis of regulatory elements. Proc Natl Acad Sci USA 85: 9753–9757

    PubMed  CAS  Google Scholar 

  • Arya SK, Beaver B, Jagodzinski L, Ensoli B, Kank PJ, Albert J, Fenyo J, Fenyo EM, Biberfeld G, Zagury JF, Laure F, Essa M, Norrby E, Wong-Staal F, Gallo RC (1987) New human and simian HIV-related retroviruses possess functional transactivator (tat) gene. Nature 328: 548–550

    PubMed  CAS  Google Scholar 

  • Baldwin AS, Sharp PA (1988) Two transcription factors, NF-κB and H2TFI, interact with a single regulatory sequence in the class I major histocompatibility complex promoter. Proc Natl Acad Sci USA 85: 723–727

    PubMed  CAS  Google Scholar 

  • Ball JK, McCarter JA (1971) Repeated demonstration of a mouse leukemia virus after treatment with chemical carcinogens. JNCI 46: 751–762

    PubMed  CAS  Google Scholar 

  • Ball JK, Arthur LO, Dekaban GA (1985) The involvement of a type-B retrovirus in the induction of thymic lymphomas. Virology 140: 159–172

    PubMed  CAS  Google Scholar 

  • Ball JK, Diggelmann H, Dekaban GA, Grossi GF, Semmler R, Waight PA, Fletcher RF (1988) Alterations in the U3 region of the long terminal repeat of an infectious thymotropic type B retrovirus. J Virol 62: 2985–2993

    PubMed  CAS  Google Scholar 

  • Barklis E, Mulligan RC, Jaenisch R (1986) Chromosomal position or virus mutation permits retrovirus expression in embryonal carcinoma cells. Cell 47: 391–399

    PubMed  CAS  Google Scholar 

  • Bauerle PA, Baltimore D (1988) IκB: a specific inhibitor of the NF-κB transcription factor. Science 242: 540–546

    Google Scholar 

  • Bohnlein E, Lowenthal JW, Siekevitz M, Ballard DW, Franza BR, Greene WC (1988) The same inducible nuclear proteins regulates mitogen activation of both the interleukin-2 receptor-alpha gene and type 1 HIV. Cell 53: 827–836

    PubMed  CAS  Google Scholar 

  • Boral AL, Okenquist SA, Lenz J (1989) Identification of the SL3–3 virus enhancer core as a T-lymphoma cell-specific element. J Virol 63: 76–84

    PubMed  CAS  Google Scholar 

  • Bosze A, Thiesen H, Charney P (1986) A transcriptional enhancer with specificity for erythroid cells is located in the long terminal repeat of the Friend murine leukemia virus. EMBO J 5: 1615–1623

    PubMed  CAS  Google Scholar 

  • Brady J, Jeang K-T, Duvall J, Khoury G (1987) Identification of p 40x- responsive regulatory sequences within the human T-cell leukemia virus type I long terminal repeat. J Virol 61: 2175–2181

    PubMed  CAS  Google Scholar 

  • Brown DW, Blais BP, Robinson HL (1988) Long terminal repeat (LTR) sequences, env, and a region near the 5′ LTR influence the pathogenic potential of recombinants between Rous-associated virus type 0 and 1. J Virol 62: 3431–3437

    PubMed  CAS  Google Scholar 

  • Buetti E, Kuhnel B (1986) Distinct sequence elements involved in the glucocorticoid regulation of the mouse mammary tumor virus promoter identified by linker scanning mutagenesis. J Mol Biol 190: 379–389

    PubMed  CAS  Google Scholar 

  • Carlberg K, Ryden TA, Beemon K (1988) Localization and footprinting of an enhancer within the avian sarcoma virus gag gene. J Virol 62: 1617–1624

    PubMed  CAS  Google Scholar 

  • Cato ACB, Weinmann J (1988) Mineralocorticoid regulation of transcription of transfected mouse mammary tumor virus DNA in cultured kidney cells. J Cell Biol 106: 2119–2125

    PubMed  CAS  Google Scholar 

  • Cato ACB, Miksicek R, Schutz G, Arnemann J, Beato M (1986) The hormone regulatory element of mouse mammary tumor virus mediates progesterone induction. EMBO J 5: 2237–2240

    PubMed  CAS  Google Scholar 

  • Cato ACB, Henderson D, Ponta H (1987) The hormone response element of the mouse mammary tumor virus DNA mediates the progestin and androgen induction of transcription in the proviral long terminal repeat region. EMBO J 6: 363–368

    PubMed  CAS  Google Scholar 

  • Cato ACB, Skroch P, Weinmann J, Butkeraitis P, Ponta H (1988) DNA sequences outside the receptor-binding sites differentially modulate the responsiveness of the mouse mammary tumor virus promoter to various steroid hormones. EMBO J 7: 1403–1410

    PubMed  CAS  Google Scholar 

  • Celander D, Haseltine WA (1984) Tissue-specific transcription preference as a determinant of cell tropism and leukaemogenic potential of murine retroviruses. Nature 312: 159–162

    PubMed  CAS  Google Scholar 

  • Celander D, Haseltine WA (1987) Glucocorticoid regulation of murine leukemia virus transcription elements is specified by determinants within the viral enhancer region. J Virol 61: 269–275

    PubMed  CAS  Google Scholar 

  • Celander D, Hsu BL, Haseltine WA (1988) Regulatory elements within the murine leukemia virus enhancer regions mediate glucocorticoid responsiveness J Virol 62: 1314–1322

    PubMed  CAS  Google Scholar 

  • Chalepakis G, Arnemann J, Slater E, Bruller H-J, Gross B, Beato (1988) Differential gene activation by glucocorticoids and progestins through the hormone regulatory element of mouse mammary tumor virus. Cell 53: 371–382

    PubMed  CAS  Google Scholar 

  • Chandler VL, Maler BA, Yamamoto K (1983) DNA sequences bound specifically by glucocorticoid receptor in vitro render a heterologous promoter hormone responsive in vivo. Cell 33: 489–499

    PubMed  CAS  Google Scholar 

  • Chatis PA, Holland CA, Hartley JW, Rowe WP, Hopkins N (1983) Role for the 3′ end of the genome in determining disease specificity of Friend and Moloney murine leukemia virus. Proc Natl Acad Sci USA 80:4408–4411

    PubMed  CAS  Google Scholar 

  • Chatis PA, Holland CA, Silver JE, Frederickson TN, Hopkins N, Hartley JW (1984) A 3′ end fragment encompassing the transcriptional enhancer of nondefective Friend virus confers erythroleukemogenicity on Moloney leukemia virus. J Virol 52: 248–254

    PubMed  CAS  Google Scholar 

  • Chattopadhyay SK, Baroudy BM, Holmes KL, Fredrickson TN, Lander MR, Morse III HC, Hartley JW (1989) Biologic and molecular genetic characteristics of a unique MCF virus that is highly leukemogenic in ecotropic virus-negative mice. Virology 168: 90–100

    PubMed  CAS  Google Scholar 

  • Chen ISY, Slamon DJ, Rosenblatt JD, Shah NP, Quan SG, Wachsman W (1985) The x gene is essential for HTLV replication. Science 229: 54–58

    PubMed  CAS  Google Scholar 

  • Chodosh LA, Baldwin AS, Carthew RW, Sharp PA (1988) Human CCAAT-binding proteins have heterologous sub-units. Cell 53: 11–24

    PubMed  CAS  Google Scholar 

  • Choi Y, Henrard D, Lee I, Ross SR (1987) The mouse mammary tumor virus long terminal repeat directs expression in epithelial and lymphoid cells of different tissues in transgenic mice. J Virol 61:3013–3019

    PubMed  CAS  Google Scholar 

  • Claude A (1967) An active factor inhibiting body growth in mice: Its origin and mode of action. In: Their H, Rytomaa T (eds) Control of cellular growth in adult organisms. Academic, New York, pp 302–309

    Google Scholar 

  • Cordingley MG, Hager GL (1988) Binding of multiple factors to the MMTV promoter in crude and fractionated nuclear extracts. Nucleic Acids Res 2: 609–627

    Google Scholar 

  • Cordingley MG, Riegel AT, Hager GL (1987) Steroid-dependent interaction of transcription factors with the inducible promoter of mouse mammary tumor virus in vivo. Cell 48: 261–270

    PubMed  CAS  Google Scholar 

  • Cross SL, Feinberg MB, Wolf JB, Holbrook NJ, Wong-Staal F, Leonard WJ (1987) Regulation of the human interleukin-2 receptor α chain promoter: activation of a nonfunctional promoter by the transactivator gene of HTLV-1. Cell 49: 47–56

    PubMed  CAS  Google Scholar 

  • Cullen BR (1986) Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism. Cell 46: 973–982

    PubMed  CAS  Google Scholar 

  • Cullen BR, Lomedico PT, Ju G (1984) Transcriptional interference in avian retroviruses-implication for the promoter insertion model of leukemogenesis. Nature 307: 241–245

    PubMed  CAS  Google Scholar 

  • Cullen BR, Raymond K, Ju G (1985a) Functional analysis of the transcription control region located within the avian retroviral long terminal repeat. Mol Cell Biol 5: 438–447

    PubMed  CAS  Google Scholar 

  • Cullen BR, Raymond K, Ju G (1985b) Transcriptional activity of avian retroviral long terminal repeats directly correlates with enhancer activity. J. Virol 53: 515–521

    PubMed  CAS  Google Scholar 

  • Cuypers HT, Selten G, Quint W, Zylstra M, Maandag ER, Boelens W, van Wezenbeek P, Melief C, Berns A (1984) Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell 37: 141–150

    PubMed  CAS  Google Scholar 

  • Darbre P, Page M, Dking RJB (1986) Androgen regulation by the long terminal repeat of mouse mammary tumor virus. Mol Cell Biol 6: 2847–2854

    PubMed  CAS  Google Scholar 

  • Davis BR, Brightman BK, Chandy KG, Fan H (1987a) Characterization of a preleukemic state induced by Moloney murine leukemia virus: evidence for two infection events during leukemogenesis. Proc Natl Acad Sci USA 84: 4875–4879

    PubMed  CAS  Google Scholar 

  • Davis MG, Kenney S, Kamine J, Pagano JS, Huang E-S (1987b) Immediate-early gene region of human cytomegalovirus trans-activates the promoter of human immunodeficiency virus. Proc Natl Acad Sci USA 84: 8642–8646

    PubMed  CAS  Google Scholar 

  • Dayton AI, Sodroski JG, Rosen CA, Goh WC, Haseltine WA (1986) The trans-activator gene of the human T cell lymphotropic virus type III is required for replication. Cell 44: 941–947

    PubMed  CAS  Google Scholar 

  • DeFranco D, Yamamoto K (1986) The two different factors act separately or together to specify functionally distinct activities at a single transcriptional enhancer. Mol Cell Biol 6: 993–1001

    PubMed  CAS  Google Scholar 

  • Derse D (1988) Trans-acting regulation of bovine leukemia virus mRNA processing. J Virol 62: 1115–1119

    PubMed  CAS  Google Scholar 

  • Derse D, Casey JW (1986) Two elements in the bovine leukemia virus long terminal repeat that regulate gene expression. Science 231: 1437–1440

    PubMed  CAS  Google Scholar 

  • DesGroseillers L, Jolicoeur P (1984) The tandem direct repeats within the long terminal repeat of murine leukemia viruses are the primary determinant of their leukemogenic potential. J Virol 52: 945–952

    PubMed  CAS  Google Scholar 

  • DesGrosseillers L, Rassert E, Jolicoeur P (1983) Thymotropism of murine leukemia virus is conferred by its long terminal repeat. Proc Natl Acad Sci USA 80: 4203–4207

    Google Scholar 

  • Dickson C, Smith R, Peters G (1981) In vitro synthesis of polypeptides encoded by the long terminal repeat region of mouse mammary tumor virus DNA. Nature 291: 511–513

    PubMed  CAS  Google Scholar 

  • Dickson C, Smith R, Brookes S, Peters G (1984) Tumorigenesis by mouse mammary tumor virus: proviral activation of a cellular gene in the common integration region int-2. Cell 37: 529–536

    PubMed  CAS  Google Scholar 

  • Dinter H, Chiu R, Imagawa M, Karin M, Jones KA (1987) In vitro activation of the HIV-1 enhancer in extracts from cells treated with a phorbol ester tumor promoter. EMBO J 6: 4067–4071

    PubMed  CAS  Google Scholar 

  • Donehower LA, Fleurdelys B, Hager GL (1983) Further evidence of the protein-coding potential of the mouse mammary tumor virus long terminal repeat: nucleotide sequence of an endogenous proviral long terminal repeat. J Virol 45: 941–949

    PubMed  CAS  Google Scholar 

  • Dyson PJ, Cook PR, Searle S, Wyke JA (1985) The chromatin structure of Rous sarcoma proviruses is changed by factors that act in trans in cell hybrids. EMBO J 4: 413–420

    PubMed  CAS  Google Scholar 

  • Emerman M, Temin HM (1984) Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell 39: 459–467

    CAS  Google Scholar 

  • Emerman M, Guyander M, Montagnier L, Baltimore D, Muesing MA (1987) The specificity of the human immunodeficiency virus type 2 transactivator is different from that of human immunodeficiency virus type 1. EMBO J 6: 3755–3760

    PubMed  CAS  Google Scholar 

  • Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240: 889–895

    PubMed  CAS  Google Scholar 

  • Fan H, Mittal S, Chute H, Chao E, Pattengale PK (1986) Rearrangements and insertions in the Moloney murine leukemia virus long terminal repeat alter biological properties in vivo and in vitro. J Virol 60: 204–214

    PubMed  CAS  Google Scholar 

  • Fan H, Chute H, Chao E, Pattengale PK (1988) Leukemogenicity of Moloney murine leukemia viruses carrying polyoma enhancer sequences in the long terminal repeat is dependent on the nature of the inserted polyoma sequences. Virology 166: 58–65

    PubMed  CAS  Google Scholar 

  • Fasel N, Pearson K, Buetti E, Diggelmann H (1982) The region of mouse mammary tumor virus DNA containing the long terminal repeat includes a long coding sequence and signals for hormonally regulated transcripts. EMBO J 1: 3–7

    PubMed  CAS  Google Scholar 

  • Feinberg MB, Jarrett RF, Aldovini A, Gallo RC, Wong-Staal F (1986) HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA. Cell 46:807–817

    PubMed  CAS  Google Scholar 

  • Feinberg MBV, Holbrook N, Wong-Staal F, Greene WC (1987) Activation of interleukin 2 and interleukin 2 receptor (Tac) promoter expression by the trans-activator (tat) gene product of human T-cell leukemia virus, type I. Proc Natl Acad Sci USA 84: 5389–5393

    PubMed  Google Scholar 

  • Feng S, Holland EC (1988) HIV-1 tat trans-activation requires the loop sequence within tar. Nature 334: 165–167

    PubMed  CAS  Google Scholar 

  • Fisher AG, Feinberg MB, Josephs SF, Harper ME, Marselle LV, Reyes G, Gonda MA, Aldovini A, Debouk C, Gallo RC, Wong-Staal F (1986) The trans-activator gene of HTLV-III is essential for virus replication. Nature 320: 367–371

    PubMed  CAS  Google Scholar 

  • Flamant F, Gurin CC, Sorge JA (1987) An embryonic DNA-binding protein specific for the promoter of the retrovirus long terminal repeat. Mol Cell Biol 7: 3548–3553

    PubMed  CAS  Google Scholar 

  • Flanagan JR, Krieg AM, Max EE, Khan AS (1989) Negative control region at the 5′ end of murine leukemia virus long terminal repeats. Mol Cell Biol 9: 739–746

    PubMed  CAS  Google Scholar 

  • Folks TM, Clouse DA, Justement J, Rabson A, Duh E, Kehrl JH, Fauci AS (1989) Tumor necrosis factor α induces expression of human immunodeficiency virus in a chronically infected T-cell clone. Proc Natl Acad Sci USA 86: 2365–2368

    PubMed  CAS  Google Scholar 

  • Franz T, Hilberg F, Seliger B, Stocking C, Ostertag W (1986) Retroviral mutants efficiently expressed in embryonal carcinoma cells. Proc Natl Acad Sci USA 83: 3292–3296

    PubMed  CAS  Google Scholar 

  • Franza BR, Josephs SF, Gilman MZ, Ryan W, Clarkson B (1987) Characterization of cellular proteins recognizing the HIV enhancer using a microscale DNA-affinity precipitation assay. Nature 330: 391–395

    PubMed  CAS  Google Scholar 

  • Fujisawa J-I, Seiki M, Sato M, Yoshida M (1986) A transcriptional enhancer sequence of HTLV-I is responsible for trans-activation mediated by p40x of HTLV-I. EMBO J 5: 713–718

    PubMed  CAS  Google Scholar 

  • Garcia JA, Wu FK, Mitsuyasu R, Gaynor RB (1987) Interactions of cellular proteins involved in the transcriptional regulation of the human immunodeficiency virus. EMBO J 6: 3761–3770

    PubMed  CAS  Google Scholar 

  • Garcia JA, Harrich D, Soultanakis E, Wu F, Mitsuyasu R, Gaynor RB (1989) Human immunodeficiency virus type 1 LTR TATA and TAR region sequences required for transcriptional regulation. EMBO J 8: 765–778

    PubMed  CAS  Google Scholar 

  • Gendelman HE, Phelps W, Feigenbaum L, Ostrove JM, Adachi A, Howley PM, Khoury G, Ginsberg HS, Martin MA (1986) Trans-activation of the human immunodeficiency virus long terminal repeat sequence by DNA viruses. Proc Natl Acad Sci USA 83: 9759–9763

    PubMed  CAS  Google Scholar 

  • Gentz R, Chen C-H, Rosen CA (1989) Bioassay for trans-activation using purified human immunodeficiency virus tat-encoded protein: trans-activation requires mRNA synthesis. Proc Natl Acad Sci USA 86: 821–824

    PubMed  CAS  Google Scholar 

  • Gimble JM, Duh E, Ostrove JM, Gendelman HE, Max EE, Rabson AB (1988) Activation of the human immunodeficiency virus long terminal repeat by herpes simplex virus type 1 is associated with induction of a nuclear factor that binds to the NF-kB/core enhancer sequence, J Virol 62:4104–4112

    PubMed  CAS  Google Scholar 

  • Golemis E, Li Y, Fredrickson TN, Hartley JW, Hopkins N (1989) Distinct segments within the enhancer region collaborate to specify the type of leukemia induced by nondefective Friend and Moloney viruses. J Virol 63: 328–337

    PubMed  CAS  Google Scholar 

  • Goodenow MM, Hayward WS (1987) 5′ long terminal repeats of myc-associated proviruses appear structurally intact but are functionally impaired in tumors induced by avian leukosis viruses. J Virol 61: 2489–2498

    PubMed  CAS  Google Scholar 

  • Goodwin GH (1988) Identification of three sequence-specific DNA binding proteins which interact with the Rous sarcoma virus enhancer and upstream promoter elements. J Virol 62: 2186–2190

    PubMed  CAS  Google Scholar 

  • Gorman CM, Merlino GT, Willingham MC, Pastan I, Howard BH (1982) The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proc Natl Acad Sci USA 79: 6777–6781

    PubMed  CAS  Google Scholar 

  • Gorman CM, Rigby PWJ, Lane DP (1985) Negative regulation of viral enhancers in undifferentiated embryonic stem cells. Cell 42: 519–526

    PubMed  CAS  Google Scholar 

  • Gowda S, Rao AS, Kim YW, Guntaka RV (1988) Identification of sequences in the long terminal repeat of avian sarcoma virus required for efficient transcription. Virology 162: 243–247

    PubMed  CAS  Google Scholar 

  • Graham DE, Medina D, Smith GH (1984) Increased concentration of an indigenous proviral mouse mammary tumor virus long terminal repeat-containing transcript is associated with neoplastic transformation of mammary epithelium in C3H/Sm mice. J Virol 49: 819–827

    PubMed  CAS  Google Scholar 

  • Graham M, Adams JM, Corey S (1985) Murine T lymphomas with retroviral inserts in the chromosome 14 locus for plasmacytoma variant translocations. Nature 314: 740–745

    PubMed  CAS  Google Scholar 

  • Graves BJ, Eisenberg SP, Coen DM, McKnight SL (1985a) Alternate utilization of two regulatory domains within the Moloney murine sarcoma virus long terminal repeat. Mol Cell Biol 5: 1959–1968

    PubMed  CAS  Google Scholar 

  • Graves BJ, Eisenman RN, McKnight SL (1985b) Delineation of transcriptional control signals within the Moloney murine sarcoma virus long terminal repeat. Mol Cell Biol 5: 1948–1958

    PubMed  CAS  Google Scholar 

  • Green, AR, Wyke JA (1988) Integrated proviruses as probes for chromosomal position effects in mammalian cells and their hybrids. Cancer Surv 7: 335–349

    PubMed  CAS  Google Scholar 

  • Green AR, Searle S, Gillespie DAF, Bissell M, Wyke JA (1986) Expression of integrated Rous sarcoma viruses: DNA rearrangements 5′ to the provirus are common in transformed rat cells but not seen in infected but untransformed cells. EMBO J 5: 707–711

    PubMed  CAS  Google Scholar 

  • Griffin GE, Leung K, Folks TM, Kunkel S, Nabel GJ (1989) Activation of HIV gene expression during monocyte differentiation by induction of Nf-κB. Nature 339: 70–73

    PubMed  CAS  Google Scholar 

  • Guilhot S, Hampe A, d’Auriol L, Galibert F (1987) Nucleotide sequence analysis of the LTRs and env genes of SM-FeSv and GA-FeSV. Virology 161: 252–258

    PubMed  CAS  Google Scholar 

  • Gustafson TA, Miwa T, Boxer LM, Kedes L (1988) Interaction of nuclear proteins with muscle-specific regulatory sequences of the human cardiac α-actin promoter. Mol Cell Biol 8: 4110–4119

    PubMed  CAS  Google Scholar 

  • Guy B, Kieny MP, Riviere U, Le Peuch C, Dott K, Girard M, Montagnier L, Lecocq J-P (1987) HIV F/3′ orf encodes a phosphorylated GTP-binding protein resembling an oncogene product. Nature 330: 265–269

    Google Scholar 

  • Guyader M, Emerman M, Sonigo P, Clavel F, Montagnier L, Alizon M (1987) Genome organization and transactivation of the human immunodeficiency virus type 2. Nature 326: 662–669

    PubMed  CAS  Google Scholar 

  • Hallberg B, Grundstrom T (1988) Tissue specific sequence motifs in the enhancer of the leukaemogenic mouse retrovirus SL-3. Nucleic Acids Res 16: 5927–5944

    PubMed  CAS  Google Scholar 

  • Ham J, Thomson A, Needham M, Webb P, Parker M (1988) Characterization of response elements for androgens, glucocorticoids, and progestins in mouse mammary tumor virus. Nucleic Acids Res 16: 5263–5276

    PubMed  CAS  Google Scholar 

  • Hanecak R, Mittal S, Davis BR, Fan H (1986) Generation of infectious Moloney murine leukemia viruses with deletions in the U3 portion of the long terminal repeat. Mol Cell Biol 6: 4634–4640

    PubMed  CAS  Google Scholar 

  • Hanecak R, Pattengale PK, Fan H (1988) Addition or substitution of simian virus 40 enhancer sequences into the Moloney murine leukemia virus (M-MuLV) long terminal repeat yields infectious M-MuLV with altered biological properties. J Virol 62: 2427–2436

    PubMed  CAS  Google Scholar 

  • Haseltine WA, Sodroski J, Patarca R, Briggs D, Perkins D, Wong-Staal F (1984) Structure of 3′ terminal region of type II human T lymphotropic virus: evidence for new coding region. Science 225:419–421

    PubMed  CAS  Google Scholar 

  • Hauber J, Cullen BR (1988) Mutational analysis of the trans activation-responsive region of the human immunodeficiency virus type I long terminal repeat. J Virol 62: 673–679

    PubMed  CAS  Google Scholar 

  • Hauber J, Perkins A, Heimer EP, Cullen BR (1986) Trans-activation of human immunodeficiency virus gene expression is mediated by nuclear events. Proc Natl Acad Sci USA: 6364–6368

    Google Scholar 

  • Hayward WS, Neel BG, Astrin SM (1981) Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290: 465–480

    Google Scholar 

  • Herman SA, Coffin JM (1986) Differential transcription from the long terminal repeats of integrated avian leukosis virus DNA. J Virol 60: 497–505

    PubMed  CAS  Google Scholar 

  • Hidaka M, Inoue J, Yoshida M, Seiki M (1988) Post-transcriptional regulator (rex) of HTLV-1 initiates expression of viral structural proteins but suppresses expression of regulatory proteins. EMBO J: 519–523

    Google Scholar 

  • Hilberg F, Stocking C, Ostertag W, Grez M (1987) Functional analysis of a retroviral host-range mutant: altered long terminal repeat sequences allow expression in embryonal carcinoma cells. Proc Natl Acad Sci USA 84: 5232–5236

    PubMed  CAS  Google Scholar 

  • Hodgson CP, Arora P, Fisk RZ (1987) Nucleotide sequence of the long terminal repeat of the avian retrovirus RAV-1: evolution of avian retroviruses. Nucleic Acids Res 15: 2393

    PubMed  CAS  Google Scholar 

  • Holland CA, Wozney J, Chatis PA, Hopkins N, Hartley JW (1985) Construction of recombinants between molecular clones of murine retrovirus MCF 247 and Akv: determinant of an in vitro host range property that maps in the long terminal repeat. J Virol 53: 152–157

    PubMed  CAS  Google Scholar 

  • Holland CA, Thomas CY, Chattopadhyay SK, Koehne C, O’Donnell PV (1989) Influence of enhancer sequences on thymotropism and leukemogenicity of mink cell focus-forming viruses. J Virol 63:1284–1292

    PubMed  CAS  Google Scholar 

  • Hsu C-LL, Fabritius C, Dudley J (1988) Mouse mammary tumor virus provirues in T-cell lymphomas lack a negative regulatory element in the long terminal repeat. J Virol 62: 4644–4652

    PubMed  CAS  Google Scholar 

  • Huang AL, Ostrowski MC, Berard D, Hager GL (1981) Glucocorticoid regulation of the Ha-MuSV p21 gene conferred by sequences from mouse mammary tumor virus. Cell 27: 245–255

    PubMed  CAS  Google Scholar 

  • Huang C-C, Hammond C, Bishop JM (1984) Nucleotide sequence of v-fps in the PRCII strain of avian sarcoma virus. J Virol 50: 125–131

    PubMed  CAS  Google Scholar 

  • Hynes N, van Ooyen AJJ, Kennedy N, Herrlich P, Ponta H, Groner B (1983) Subfragments of the large terminal repeat cause glucocorticoid-responsive expression of mouse mammary tumor virus and of an adjacent gene. Proc Natl Acad Sci USA 80: 3637–3641

    PubMed  CAS  Google Scholar 

  • Inoue J-I, Seiki M, Taniguchi T, Tsuru S, Yoshida M (1986) Induction of interleukin 2 receptor gene expression by p40x encoded by human T-cell leukemia virus type I. EMBO J 5: 2883–2888

    PubMed  CAS  Google Scholar 

  • Inoue J-I, Yoshida M, Seiki M (1987) Transcriptional (p40x) and post-transcriptional (p27x – III) regulators are required for the expression and replication of human T-cell leukemia virus type I genes. Proc Natl Acad Sci USA 84: 3653–3657

    PubMed  CAS  Google Scholar 

  • Ishimoto A, Takimoto M, Adachi A, Kakuyama M, Kato S, Kakimi K, Fukuoka K, Ogiu T, Matsuyama M (1987) Sequences responsible for erythroid and lymphoid leukemia in the long terminal repeats of Friend-mink cell focus-forming and Moloney murine leukemia viruses. J Virol 61: 1861–1866

    PubMed  CAS  Google Scholar 

  • Jahner D, Haase K, Mulligan R, Jaenisch R (1982) De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298: 623–628

    PubMed  CAS  Google Scholar 

  • Jakobovits A, Smith DH, Jakobovits EB, Capon DJ (1988) A discrete element 3′ of human immunodeficiency virus 1 (HIV-1) and HIV-2 mRNA initiation sites mediates transcriptional activation by an HIV trans activator. Mol Cell Biol 3: 2555–2561

    Google Scholar 

  • Jeang K-T, Boros I, Brady J, Radonovich M, Khoury G (1988a) Characterization of cellular factors that interact with the human T-cell leukemia virus type I p40x-responsive 21-base-pair sequence. J Virol 62: 4499–4509

    PubMed  CAS  Google Scholar 

  • Jeang K-T, Shank PR, Kumar A (1988b) Transcriptional activation of homologous viral long terminal repeats by the human immunodeficiency virus type 1 or the human T-cell leukemia virus type I tat proteins occurs in the absence of de novo protein synthesis. Proc Natl Acad Sci USA 85:8291–8295

    PubMed  CAS  Google Scholar 

  • Jones KA, Kadonaga JT, Luciw PA, Tjian R (1986) Activation of the AIDS retrovirus promoter by the cellular transcription factor, Spl. Science 231: 755–759

    Google Scholar 

  • Jones KA, Luciw PA, Duchange N (1988a) Structural arrangements of transcriptional control domains within the 5′-untranslated leader regions of the HIV-1 and HIV-2 promoters. Genes Dev 2: 1101–1114

    PubMed  CAS  Google Scholar 

  • Jones NC, Rigby PWJ, Ziff EB (1988b) Trans-acting protein factors and the regulation of eukaryotic transcription: lessons from studies on DNA tumor viruses. Genes Dev 2: 267–281

    PubMed  CAS  Google Scholar 

  • Ju G, Cullen BR (1985) The role of avian retroviral LTRs in the regulation of gene expression and viral replication. Adv Virus Res 30: 179–223

    PubMed  CAS  Google Scholar 

  • Kan NC, Flordellis CS, Mark GE, Duesberg PH, Papa TS (1984) Nucleotide sequence of avian carcinoma virus MH2: two potential onc genes, one related to avian virus MC29 and the other related to murine sarcoma virus 3611. Proc Natl Acad Sci USA 81: 3000–3004

    PubMed  CAS  Google Scholar 

  • Kao SY, Caiman AF, Luciw PA, Peterlin BM (1987) Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 330: 489–493

    PubMed  CAS  Google Scholar 

  • Karnitz L, Poon D, Weil PA, Chalkley R (1989) Purification and properties of the Rous sarcoma virus internal enhancer binding factor. Mol Cell Biol 9: 1929–1939

    PubMed  CAS  Google Scholar 

  • Kaufman JD, Valandra G, Roderiquez G, Bushar G, Giri C Norcross MA (1987) Phorbol ester enhances human immunodeficiency virus-promoted gene expression and acts on a repeated 10-base-pair functional enhancer element. Mol Cell Biol 7: 3759–3766

    PubMed  CAS  Google Scholar 

  • Kawakami K, Scheidereit C, Roeder RG (1988) Identification and purification of a human immunoglobulin-enhancer-binding protein (NF-κB) that activates transcription from a human immunodeficiency virus type 1 promoter in vitro. Proc Natl Acad Sci USA 85: 4700–4704

    PubMed  CAS  Google Scholar 

  • Kelly M, Holland CA, Lung ML, Chattopadhyay SK, Lowy DR, Hopkins N (1983) Nucleotide sequence of the 3′ end of MCF 247 murine leukemia virus. Jr Virol 45: 291–298

    CAS  Google Scholar 

  • Khan AS, Martin MA (1983) Endogenous murine leukemia proviral long terminal repeats contain a unique 190-base-pair insert. Proc Natl Acad Sci USA 80: 2699–2703

    PubMed  CAS  Google Scholar 

  • Kitamura N, Kitamura A, Toyoshima K, Hirayama Y, Yoshida M (1982) Avian sarcoma virus Y73 genome sequence and structural similarity of its transforming gene product to that of Rous sarcoma virus. Nature 297: 205–208

    PubMed  CAS  Google Scholar 

  • Kiyokawa T, Kawaguchi T, Seiki M, Yoshida M (1985a) Association with nucleus of pX gene product of human T-cell leukemia virus type I. Virology 147: 462–465

    PubMed  CAS  Google Scholar 

  • Kiyokawa T, Seiki M, Iwashita S, Imagawa K, Shimizu F, Yoshida M (1985b) p27x-III and p21x-III, proteins encoded by the pX sequence of human T-cell leukemia virus type I. Proc Natl Acad Sci USA 82: 8359–8363

    CAS  Google Scholar 

  • Klock G, Strahle U, Schutz G (1987) Oestrogen and glucocorticoid responsive elements are closely related but distinct. Nature 329: 734–736

    PubMed  CAS  Google Scholar 

  • Kuhnel B, Buetti E, Diggelmann H (1986) Functional analysis of the glucocorticoid regulatory elements present in the mouse mammary tumor virus long terminal repeat: a synthetic distal binding site can replace the proximal binding domain. J Mol Biol 190: 367–378

    PubMed  CAS  Google Scholar 

  • Kuo W-L, Vilander LR, Huang M, Peterson DO (1988) A transcriptionally defective long terminal repeat within an endogenous copy of mouse mammary tumor virus proviral DNA. J Virol 62: 2394–2402

    PubMed  CAS  Google Scholar 

  • Kwon BS, Weissman SM (1984) Mouse mammary tumor virus-related sequences in mouse lymphocytes are inducible by 12-O-tetradecanoyl phorbol 13-acetate. J Virol 52: 1000–1004

    PubMed  CAS  Google Scholar 

  • Laimins LA, Gruss P, Pozatti R, Khoury G (1984a) Characterization of enhancer elements in the long terminal repeat of a Moloney murine sarcoma virus. J Virol 49: 183–189

    PubMed  CAS  Google Scholar 

  • Laimins LA, Tsichlis P, Khoury G (1984b) Multiple enhancer domains in the 3′ terminus of the Prague strain of Rous sarcoma virus. Nucleic Acids Res 12: 6427–6442

    PubMed  CAS  Google Scholar 

  • Landshulz WH, Johnson PF, Adashi EY, Graves BJ, McKnight SL (1988) Isolation of a recombinant copy of the gene encoding C/EBP. Genes Dev 2: 786–800

    Google Scholar 

  • Langer SJ, Ostrowski MC (1988) Negative regulation of transcription in vitro by a glucocorticoid response element is mediated by a trans-acting factor. Mol Cell Biol 8: 3872–3881

    PubMed  CAS  Google Scholar 

  • Le S-Y, Chen J-H, Braun MJ, Gonda MA, Maízel JV (1988) Stability of RNA stem-loop structure and distribution of non-random structure in the human immunodeficiency virus (HIV-1). Nucleic Acids Res 15: 5153–5168

    Google Scholar 

  • Lee F, Mulligan R, Berg P, Ringold G (1981) Glucocorticoids regulate expression of dihydrofolate reductase cDNA in mouse mammary tumor virus chimaeric plasmids. Nature 294: 228–232

    PubMed  CAS  Google Scholar 

  • Lee WT-L, Prakash O, Klein D, Sarkar NH (1987) Structural alterations in the long terminal repeat of an acquired mouse mammary tumor virus provirus in a T-cell leukemia of DBA/2 mice. Virology 159: 39–48

    PubMed  CAS  Google Scholar 

  • Lenardo MJ, Kuang A, Gifford A, Baltimore D (1988) NF-κB protein purification from bovine spleen: nucleotide stimulation and binding site specificity. Proc Natl Acad Sci USA 85: 8825–8829

    PubMed  CAS  Google Scholar 

  • Lenz J, Gelander D, Crowther RL, Patarca R, Perkins DW, Haseltine WA (1984) Determination of the leukemogenicity of a murine retrovirus by sequences within the long terminal repeat. Nature 308:467–470

    PubMed  CAS  Google Scholar 

  • Leung K, Nabel GJ (1988) HTLV-I transactivator induces interleukin-2 receptor expression through an NF-kB like factor. Nature 333: 776–778

    PubMed  CAS  Google Scholar 

  • Levy DE, McKinnon RD, Brolaski MN, Gautsch JW, Wilson MC (1987) The 3′ long terminal repeat of a transcribed yet defective endogenous retroviral sequence is a competent promoter of transcription. J Virol 61: 1261–1265

    PubMed  CAS  Google Scholar 

  • Li Y, Holland CA, Hartley JW, Hopkins N (1984) Viral integration near c-myc in 10–20% of MCF 247-induced AKR lymphomas. Proc Natl Acad Sci USA 81: 6808–6811

    PubMed  CAS  Google Scholar 

  • Li Y, Golemis E, Hartley JW, and Hopkins N (1987) Disease specificity of non-defective Friend and Moloney murine leukemia viruses is controlled by a small number of nucleotides. J Virol 61: 693–700

    PubMed  CAS  Google Scholar 

  • Liegler TJ, Blair PB (1986) Direct detection of exogenous mouse mammary tumor virus sequences in lymphoid cell of BALB/cfC3H female mice. J Virol 59: 159–162

    PubMed  CAS  Google Scholar 

  • Linial M, Gunderson N, Groudine M (1985) Enhanced transcription of c-myc in bursal lymphoma cells requires continuous protein synthesis. Science 230: 1126–1132

    PubMed  CAS  Google Scholar 

  • Linney E, Davis B, Overhauser J, Chao E, Fan H (1984) Non-function of a Moloney murine leukemia virus regulatory sequence in F9 embryonal carcinoma cells. Nature 308: 470–472

    PubMed  CAS  Google Scholar 

  • Loh TP, Sievert LL, Scott RW (1987) Proviral sequences that restrict retroviral expression in mouse embryonal carcinoma cells. Mol Cell Biol 10: 3775–3784

    Google Scholar 

  • Loh TP, Sievert LL, Scott RW (1988) Negative regulation of retrovirus expression in embryonal carcinoma cells mediated by an intragenic domain. J Virol 62: 4086–4095

    PubMed  CAS  Google Scholar 

  • Lowenthal JW, Ballard DW, Bohnlein E, Greene WC (1989) Tumor necrosis factor α induces proteins that bind specifically to κB-like enhancer elements and regulate interleukin 2 receptor α-chain gene expression in primary human T lymphocytes. Proc Natl Acad Sci USA 86: 2331–2335

    PubMed  CAS  Google Scholar 

  • Lowenthal JW, Böhnlein E, Ballard DW, Greene WC (1988) Regulation of interleukin 2 receptor α subunit (Tac or CD25 antigen) gene expression; Binding of inducible nuclear proteins to discrete promoter sequences correlates with transcriptional activation. Proc Natl Acad Sci USA 85: 4468–4472

    PubMed  CAS  Google Scholar 

  • Luciw PA, Bishop JM, Varmus HE, Capecchi MR (1983) Location and function of retroviral and SV40 sequences that enhance biochemical transformation after microinjection of DNA. Cell 33:705–716

    PubMed  CAS  Google Scholar 

  • Luciw PA, Chen-Mayer C, Levy JA (1987) Mutational analysis of the human immunodefi-ciencyvirus (HIV): the orf-B region down regulates virus replication. Proc Natl Acad Sci USA 84: 1434–1438

    PubMed  CAS  Google Scholar 

  • Maekawa T, Itoh F, Okamoto T, Kurimoto M, Imamoto F, Ishii S (1989) Identification and purification of the enhancer-binding factor of human immunodeficiency virus-1: multiple proteins and binding to other enhancers. J Biol Chem 264: 2826–2831

    PubMed  CAS  Google Scholar 

  • Maity SN, Golumbek PT, Karsenty G, de Crombrugghe B (1988) Selective activation of transcription by a novel CCAAT binding factor. Science 241: 582–585

    PubMed  CAS  Google Scholar 

  • Malim MH, Hauber J, Le SY, Maizel JV, Cullen BR (1989) The HIV rev trans-activator acts through a structured target sequence to activate nuclear transport of unspliced viral messenger RNA. Nature 338: 254–257

    PubMed  CAS  Google Scholar 

  • Majors JE, Varmus HE (1983a) A small region of the mouse mammary tumor virus long terminal repeat confers glucocorticoid hormone regulation on a linked heterologous gene. Proc Natl Acad Sci USA 80: L 5866–5870

    PubMed  CAS  Google Scholar 

  • Majors JE, Varmus HE (1983b) Nucleotide sequence of an apparent proviral copy of env mRNA defines determinant of expression of the mouse mammary tumor virus env gene. J Virol 47: 495–504

    PubMed  CAS  Google Scholar 

  • Maruyama M, Shibuya H, Harada H, Tatakeyama M, Seiki M, Fumjita T, Inoue J-I, Yoshida M, Taniguchi T (1987) Evidence for aberrant activation of the interleukin-2 autocrine loop by HTLV-I-encoded p40x and T3/Ti complex triggering. Cell 48: 342–350

    Google Scholar 

  • Mayer BJ, Hamaguchi M, Hanafusa H (1988) A novel viral oncogene with structural similarity tophospholipase C. Nature 332: 272–275

    PubMed  CAS  Google Scholar 

  • Michalides R, Wagenaar E (1986) Site-specific rearrangements in the long terminal repeat of extra mouse mammary tumor proviruses in murine T-cell leukemias. Virology 154: 76–84

    PubMed  CAS  Google Scholar 

  • Michalides R, Wagenaar E, Weijers P (1985) Rearrangement in the long terminal repeat of extra mouse mammary tumor proviruses in T-cell leukemias of mouse strain GR result in a novel enhancer-like structure. Mol Cell Biol 5: 823–830

    PubMed  CAS  Google Scholar 

  • Miksicek R, Heber A, Schmid W, Dnaesch U, Posseckert G, Beato M, Schutz G (1986) Glucocorticoid responsiveness of the transcriptional enhancer of Moloney murine sarcoma virus. Cell 467: 283–290

    Google Scholar 

  • Miksicek R, Borgmeyer W, Nowock J (1987) Interaction of the TGGCA-binding protein with upstream sequences is required for efficient transcription of mouse mammary tumor virus. EMBO J 6: 1355–1360

    PubMed  CAS  Google Scholar 

  • Miyatake S, Seiki M, Malefijt D, Heike T, Fujisawa J-I, Takebe Y, Nishida J, Shlomai J, Tokata T, Arai K-I, Arai N (1988a) Activation of T cell-derived lymphokine genes in T cells and fibroblasts: effects of human T cell leukemia virus type I p40x protein and bovine papilloma virus encoded E2 protein. Nucleic Acids Res 16: 5581–5587

    Google Scholar 

  • Miyatake S, Seiki M, Yoshida M, Arai K-I (1988b) T-cell activation signals and human T-cell leukemia virus type I-encoded p40x protein activate the mouse granulocyte-macrophage colony-stimulating factor gene through a common DNA element. Mol Cell Biol 8: 5581–5587

    PubMed  CAS  Google Scholar 

  • Morley KL, Toohey MG, Peterson DO (1987) Transcriptional repression of a hormone-responsive promoter. Nucleic Acids Res 15: 6973–6989

    PubMed  CAS  Google Scholar 

  • Morris DW, Bradshaw HD, Billy HT, Munn RJ, Cardiff RD (1989) Isolation of a pathogenic clone of mouse mammary tumor virus. J Virol 63: 148–158

    PubMed  CAS  Google Scholar 

  • Mosca JD, Bednarik DP, Raj NBK, Rosen CA, Sodroski JG, Haseltine WA, Hayward GS, Pitha PM (1987) Activation of human immunodeficiency virus by herpesvirus infection: Identification of a region within the long terminal repeat that responds to a trans-acting factor encoded by herpes simplex virus 1. Proc Natl Acad Sci USA 84: 7408–7412

    PubMed  CAS  Google Scholar 

  • Muesing MA, Smith DH, Capon DJ (1987) Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell 48: 691–701

    PubMed  CAS  Google Scholar 

  • Nabel G, Baltimore D (1987) An inducible transcription factor activates the expression of human immunodeficiency virus in T lymphocytes. Nature 326: 711–713

    PubMed  CAS  Google Scholar 

  • Nabel GJ, Rice SA, Knipe DM, Baltimore D (1988) Alternative mechanisms for activation of human immunodeficiency virus enhancer in T cells. Science 239: 1299–1302

    PubMed  CAS  Google Scholar 

  • Neckameyer WS, Wang L-H (1985) Nucleotide sequence of avian sarcoma virus UR2 and comparison of its transforming gene with other members of the tyrosine protein kinase oncogene family. J Virol 53:879–884

    PubMed  CAS  Google Scholar 

  • Niederman TMJ, Thielan BJ, Ratner L (1989) Human immunodeficiency virus type 1 negative factor is a transcriptionalsilencer. Proc Natl Acad Sci USA 86: 1128–1132

    PubMed  CAS  Google Scholar 

  • Norton PA, Coffin JM (1987) Characterization of Rous sarcoma virus sequences essential for viral gene expression. J Virol 61: 1171–1179

    PubMed  CAS  Google Scholar 

  • Nunn M, Weiher H, Bullock P, Duesberg P (1984) Avian erythroblastosis virus E26: nucleotide sequence of the tripartitite onc gene and of the LTR, and analysis of the cellular prototype of the viral ets sequence. Virology 139: 330–339

    PubMed  CAS  Google Scholar 

  • Nusse R, van Ooyen A, Cos D, Fung YK, Varmus HE (1984) Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307: 131–136

    PubMed  CAS  Google Scholar 

  • Nyborg JK, Dynan WS, Chen IS-Y, Wachsman W (1988) Binding of host-cell factors to DNA sequences in the long terminal repeat of human T-cell leukemia virus type I: implications for viral gene expression. Proc Natl Acad Sci USA 85: 1457–1461

    PubMed  CAS  Google Scholar 

  • O’Donnell PV, Fleissner E, Lonial H, Koehne C, Reicin A (1985) Early clonality and high-frequency proviral integration into the c-myc locus in AKR leukemias. J Virol 55: 500–503

    PubMed  Google Scholar 

  • Ohta M, Nyunoya N, Tanaka H, Okamoto T, Akagi T, Shimotohno K (1988) Identification of a cis-regulatory element involved in accumulation of human T-cell leukemia virus type II genomic mRNA. J Virol 62: 4445–4451

    PubMed  CAS  Google Scholar 

  • Ohtani K, Nakamura M, Saito S, Noda T, Ito Y, Sugamura K, Hinuma Y (1987) Identification of two distinct elements in the long terminal repeat of HTLV-I responsible for maximum gene expression. EMBO J 6: 389–395

    PubMed  CAS  Google Scholar 

  • Okamoto T, Matsuyama T, Mori S, Hamamoto Y, Kobayashi N, Yamamoto N, Josephs SF, Wong-Staal F, Shimotohno K (1989) Augmentation of human immunodeficiency virus type 1 gene expression by tumor necrosis factor a. AIDS Res Hum Retrov 5: 131–138

    CAS  Google Scholar 

  • Okamoto T, Wong-Staal F (1986) Demonstration of virus-specific transcriptional activator(s) in cells infected with HTLV-III by an in vitro cell-free system. Cell 47: 29–35

    PubMed  CAS  Google Scholar 

  • Osborn L, Kunkel S, Nabel GJ (1989) Tumor necrosis factor and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kB. Proc Natl Acad Sci USA 86: 2336–2340

    PubMed  CAS  Google Scholar 

  • Ostrove JM, Leonard J, Weck KE, Rabson AB, Gendelman HE (1987) Activation of the human immunodeficiency virus by herpes simplex virus type 1. J Virol 61: 3726–3732

    PubMed  CAS  Google Scholar 

  • Overbeek PA, Lai S-P, Van Quill KR, Westphal H (1986) Tissue-specific expression in transgenic mice of a fused gene containing RSV terminal sequences. Science 231: 1574–1577

    PubMed  CAS  Google Scholar 

  • Overhauser J, Fan H (1985) Generation of glucocorticoid responsive Moloney murine leukemia virus by insertion of regulatory sequences from murine mammary tumor virus into the long terminal repeat. J Virol 54: 133–141

    PubMed  CAS  Google Scholar 

  • Parkin NT, Cohen EA, Darveau A, Rosen C, Haseltine W, Sonenberg N (1988) Mutational analysis of the 5′ non-coding region of human immunodeficiency virus type 1: effects of secondary structure on translation. EMBO J 7: 2831–2837

    PubMed  CAS  Google Scholar 

  • Paskalis H, Felber BK, Pavlakis GN (1986) Cis-acting sequences responsible for the transcriptional activation of human T-cell leukemia virus type I constitute a conditional enhancer. Proc Natl Acad Sci USA 83: 6558–6562

    PubMed  CAS  Google Scholar 

  • Payne GS, Courtneidge SA, Crittenden LB, Fackley AM, Bishop JN, Varmus HE (1981) Analyses of avian leukosis viral DNA and RNA in bursal tumors suggest a novel mechanism for retroviral oncogenesis. Cell 25: 311–322

    Google Scholar 

  • Payvar FD, DeFranco D, Firestone GL, Edgar B, Wrange O, Okret S, Gustafsson JA, Yamamoto KR (1983) Sequence-specific binding of glucocorticoid receptor to MTV DNA at sites within and upstream of the transcribed region. Cell 35: 381–392

    PubMed  CAS  Google Scholar 

  • Perlmann T, Wrange O (1988) Specific glucocorticoid receptor binding to DNA reconstituted in a nucleosome. EMBO J 7: 3073–3079

    PubMed  CAS  Google Scholar 

  • Peterlin BM, Luciw PA, Barr PJ, Walker WD (1986) Elevated levels of mRNA can account for the trans-activation of human immunodeficiency virus. Proc Natl Acad Sci USA 83:9734–9738

    PubMed  CAS  Google Scholar 

  • Peterson DO (1985) Alterations in chromatin structure associated with glucocorticoid-induced expression of endogenous mouse mammary tumor virus genes. Mol Cell Biol 5: 1104–1110

    PubMed  CAS  Google Scholar 

  • Ponta H, Kennedy N, Sckroch, Hynes NE, Groner B (1985) The hormonal response region in the mouse mammary tumor virus long terminal repeat can be dissociated from the proviral promoter and has enhancer properties. Proc Natl Acad Sci USA 82: 1020–1024

    PubMed  CAS  Google Scholar 

  • Prywes R, Roeder RG (1987) Purification of the c-fos enhancer-binding protein. Mol Cell Biol 7: 3482–3489

    PubMed  CAS  Google Scholar 

  • Quint W, Boelens W, van Wezenbeed P, Cuypers T, Robanus-Maandag E, Selten G, Berns A (1984) Generation of AKR mink cell focus-forming viruses: a conserved single-copy xenotrope-like provirus provides recombinant long terminal repeat sequences. J Virol 50: 432–438

    PubMed  CAS  Google Scholar 

  • Raceviskis J, Prakash O (1984) Proteins encoded by the long terminal repeat region of mouse mammary tumor virus: identification by hybrid-selected translation. J Virol 51: 604–610

    Google Scholar 

  • Rando RF, Pellett PE, Luciw PA, Bohan CA, Srinivasan A (1987) Transactivation of human immunodeficiency virus by herpesviruses. Oncogene 1: 13–18

    PubMed  CAS  Google Scholar 

  • Reddy EP, Reynolds RK, Watson DK, Schultz RA, Lautenberger J, Papas TS (1983) Nucleotide sequence analysis of the proviral genome of avian myelocytomatosis virus (MC29). Proc Natl Acad Sci USA 80: 2500–2504

    PubMed  CAS  Google Scholar 

  • Redmond SMS, Dickson C (1983) Sequence and expression of the mouse mammary tumor virus env gene. EMBO J 2: 125–131

    PubMed  CAS  Google Scholar 

  • Rice AP, Mathews MB (1988) Transcriptional but not translational regulation of HIV-1 by the tat gene product. Nature 332: 551–553

    PubMed  CAS  Google Scholar 

  • Rice NR, Stephens RM, Couez D, Deschamp J, Kettmann R, Burny A, Gilden R (1984) The nucleotide sequence of the env and post-env region of bovine leukemia virus. Virology 138: 82–93

    PubMed  CAS  Google Scholar 

  • Richard-Foy H, Hager GL (1987) Sequence-specific positioning of nucleosomes over the steroid inducible MMTV promoter. EMBO J 6: 2321–2328

    PubMed  CAS  Google Scholar 

  • Ringold GM (1985) Steroid hormone regulation of gene expression. Annu Rev Pharmacol Toxicol 25:529–566

    PubMed  CAS  Google Scholar 

  • Robinson H, Jensen L, Coffin JM (1985) Sequences outside of the long terminal repeat determine the lymphomogenic potential of Rous-associated virus type 1. J Virol 55: 752–759

    PubMed  CAS  Google Scholar 

  • Robinson HL, Blais BM, Tsichlis PN, Coffin JM (1982) At least two regions of the viral genome determine the oncogenic potential of avian leukosis viruses. Proc Natl Acad Sci USA 79: 1225–1229

    PubMed  CAS  Google Scholar 

  • Rosen CA, Haseltine WA, Lenz J, Ruprecht R, Cloyd MW (1985a) Tissue selectivity of murine leukemia virus infection is determined by long terminal repeat sequences. J Virol 55: 862–866

    PubMed  CAS  Google Scholar 

  • Rosen CA, Sodroski JG, Haseltine W (1985b) The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell 41:813–823

    PubMed  CAS  Google Scholar 

  • Rosen CA, Sodroski JG, Haseltine WA (1985c) Location of cis-acting regulatory sequences in the human T-cell leukemia virus type I long terminal repeat. Proc Natl Acad Sci USA 82: 6502–6506

    PubMed  CAS  Google Scholar 

  • Rosen CA, Sodroski JG, Goh WC, Dayton AI, Lippke J, Haseltine WA (1986) Post-transeriptional regulation accounts for the trans-activation of the human T-lymphotropic virus type III. Nature 319:555–559

    PubMed  CAS  Google Scholar 

  • Rosen CA, Park R, Sodroski JG, Haseltine WA (1987) Multiple sequence elements are required for regulation of human T-cell leukemia virus gene expression. Proc Natl Acad Sci USA 84: 4919–4923

    PubMed  CAS  Google Scholar 

  • Rosen CA, Sodroski JG, Kettman R, Haseltine WA (1988) Activation of enhancer sequences in type II human T-cell leukemia virus and bovine leukemia virus long terminal repeats by virus-associated trans-acting regulatory factors. J Virol 57: 738–744

    Google Scholar 

  • Rosenblatt JD, Cann AJ, Slamon DJ, Smalberg IS, Shah NP, Fujii J, Wachsman W, Chen IS-Y (1988) HTLV-II transactivation is regulated by the overlapping tax-rex nonstructural genes. Science 240:916–919

    PubMed  CAS  Google Scholar 

  • Ross SR, Solter D (1985) Glucocorticoid regulation of mouse mammary tumor virus sequences in transgenic mice. Proc Natl Acad Sci USA 82: 5880–5884

    PubMed  CAS  Google Scholar 

  • Ruben S, Poteat H, Tan T-H, Kawakami K, Roeder R, Haseltine W, Rosen CA (1988) Cellular transcription factors and regulation of IL-2 receptor gene expression by HTLV-I tax gene product. Science 241: 89–92

    PubMed  CAS  Google Scholar 

  • Ruddell A, Linial M, Schubach W, Groudine M (1988) Lability of leukosis virus enhancer-binding protein in avian hematopoeitic cells. J Virol 62: 2728–2735

    PubMed  CAS  Google Scholar 

  • Ryden TA, Beemon K (1989) Avian retroviral long terminal repeats bind CCAAT/enhancer-binding protein. Mol Cell Biol 9: 1155–1164

    PubMed  CAS  Google Scholar 

  • Sagata N, Yasunaga T, Tsuzuku-Kawamura J, Ohishi K, Ogawa Y, Ikawa Y (1985) Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses. Proc Natl Acad Sci USA 823: 677–681

    Google Scholar 

  • Saito S, Nakamura M, Ohtani K, Ichijo M, Sugamura K, Hinmuma Y (1988) Trans-activation of the simian virus 40 enhancer pX product of human T-cell leukemia virus type I. J Virol 62: 644–648

    PubMed  CAS  Google Scholar 

  • Salmons B, Groner B, Calberg-Bacq CM, Ponta H (1985) Production of mouse mammary tumor virus upon transfection of a recombinant proviral DNA into cultured cells. Virology 144: 101–114

    PubMed  CAS  Google Scholar 

  • Scheidereit C, Geisse S, Westphal HM, Beato M (1983) The glucocorticoid receptor binds to defined nucleotide sequences near the promoter of mouse mammary tumor virus. Nature 304: 749–752

    PubMed  CAS  Google Scholar 

  • Schwartz DE, Tizard R, Gilbert W (1983) Nucleotide sequence of Rous sarcoma virus. Cell 32: 853–869

    PubMed  CAS  Google Scholar 

  • Sealey L, Chalkley R (1987) At least two nuclear proteins bind specifically to the Rous sarcoma virus long terminal repeat enhancer. Mol Cell Biol 7: 787–798

    PubMed  CAS  Google Scholar 

  • Sedaie MR, Benter T, Wong-Staal F (1988) Site-directed mutagenesis of two trans-regulatory genes (tat-III, trs) of HIV-I. Science 239: 910–913

    Google Scholar 

  • Seiki M, Hattori S, Hirayama Y, Yoshida M (1983) Human adult T cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proc Natl Acad Sci USA 80: 3618–3622

    PubMed  CAS  Google Scholar 

  • Seiki M, Hikikoshi A, Taniguchi T, Yoshida M (1985) Expression of the pX gene of HTLV-1: general splicing mechanism in the HTLV family. Science 228: 1532–1534

    PubMed  CAS  Google Scholar 

  • Seiki M, Inoue J-I, Hidaka M, Yoshida M (1988) Two cis-acting elements responsible for posttranscriptional trans-regulation of gene expression of human T-cell leukemia virus type I. Proc Natl Acad Sci USA 85: 7124–7128

    PubMed  CAS  Google Scholar 

  • Selby MJ, Bain ES, Luciw PA, Peterlin BM (1989) Structure, sequence, and position of the stem-loop in tar determine transcriptional elongation by tat through the HIV-1 long terminal repeat. Genes Dev 3: 547–558

    PubMed  CAS  Google Scholar 

  • Selten G, Cuypers HT, Zijlstra M, Melieft C, Berns A (1984) Involvement of c-myc in M-MuLV-inducer T-cell lymphomas of mice: frequency and mechanisms of activation. EMBO J 3: 3215–3222

    PubMed  CAS  Google Scholar 

  • Sen R, Baltimore D (1986) Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell 47: 921–928

    PubMed  CAS  Google Scholar 

  • Seto E, Yen TSB, Peterlin BM, Ou J-H (1988) Trans-activation of the human immunodeficiency virus long terminal repeat by the hepatitis B virus X protein. Proc Natl Acad Sci USA 85: 8286–8290

    PubMed  CAS  Google Scholar 

  • Shackleford G, Varmus HE (1988) Construction of a clonable, infectious, and tumorigenic mouse mammary tumor virus provirus and a derivative genetic vector. Proc Natl Acad Sci USA 85:9655–9659

    PubMed  CAS  Google Scholar 

  • Shah NP, Wachsman W, Cann AJ, Souza L, Slamon DJ, Chen IS-Y (1986) Comparison of the trans-activation capabilities of the human T-cell leukemia virus type I and II X proteins. Mol Cell Biol 6: 3626–3631

    PubMed  CAS  Google Scholar 

  • Shaw J-P, Utx PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR (1988) Identification of a putative regulator of early T cell activation genes. Science 241: 202–205

    PubMed  CAS  Google Scholar 

  • Shimotohno K, Wachsman W, Takahashi Y, Golde DW, Miwa M, Sugimura T, Chen IS-Y (1984) Nucleotide sequence of the 3′ region of an infectious human T-cell Leukemia virus type II genome. Proc Natl Acad Sci USA 81: 6657–6661

    PubMed  CAS  Google Scholar 

  • Shimotohno K, Takano M, Teruuchi T, Miwa M (1986) Requirement of multiple copies of a 21-nucleotide sequence in the U3 regions of human T-cell leukemia virus type I and II long terminal repeats for trans-acting activation of transcription. Proc Natl Acad Sci USA 83: 8112–8116

    PubMed  CAS  Google Scholar 

  • Shinnick T, Lerner R, Sutcliffe JG (1981) Nucleotide sequence of Moloney murine leukemia virus. Nature 293: 543–548

    PubMed  CAS  Google Scholar 

  • Short MK, Okenquist SA, Lenz J (1987) Correlation of leukemogenic potential of murine retroviruses with transcriptional tissue preference of the viral long terminal repeats. J Virol 61: 1067–1072

    PubMed  CAS  Google Scholar 

  • Siddiqui A, Gaynor R, Srinivasan A, Mapoles J, Farr RW (1989) Trans-activation of viral enhancers including long terminal repeat of the human immunodeficiency virus by the hepatitis B virus X protein. Virology 169:479–484

    PubMed  CAS  Google Scholar 

  • Siekevitz M, Feinberg MB, Holbrook N, Wong-Staal F, Greene WC (1987a) Activation of interleukin 2 and interleukin 2 receptor (Tac) promoter expression by the trans-activator (tat) gene product of human T-cell leukemia virus, type I. Proc Natl Acad Sci USA 84: 5389–5393

    PubMed  CAS  Google Scholar 

  • Siekevitz M, Josephs SF, Dukovich M, Peffer N, Wong-Staal F, Greene WC (1987b) Activation of the HIV-1 LTR by T cell mitogens and the trans-activator protein of HTLV-I. Science 238: 1575–1578

    PubMed  CAS  Google Scholar 

  • Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P (1987) Coexpression of MMTV/v-Haras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49:465–475

    PubMed  CAS  Google Scholar 

  • Slamon DJ, Prsee MF, Souza LM, Murdock DC, Cline MJ, Golde DW, Gasson JC, Chen IS-Y (1985) Studies of the putative transforming protein of the type I human T-cell leukemia virus. Science 228: 1427–1430

    PubMed  CAS  Google Scholar 

  • Smith DR, Vennstrom B, Hayman MJ, Enrietto PJ (1985) Nucleotide sequence of HBI, a novel recombinant MC29 derivative with altered pathogenic properties. J Virol 56: 969–977

    PubMed  CAS  Google Scholar 

  • Smith GH, Young LJT, Benjamini E, Medina D, Cardiff RD (1987) Proteins antigenically related to peptides encoded by the mouse mammary tumor virus long terminal repeat sequence are associated with intracytoplasmic A particles. J Gen 68: 473–486

    CAS  Google Scholar 

  • Sodroski JG, Rosen CA, Haseltine WA (1984) Trans-acting transcriptional activation of the long terminal repeat of human T lymphotropic viruses in infected cells. Science 225: 381–385

    PubMed  CAS  Google Scholar 

  • Sodroski J, Rosen C, Goh WC, Haseltine W (1985a) A transcriptional activator protein encoded by the x-lor region of the human T-cell leukemia virus. Science 228: 1430–1434

    PubMed  CAS  Google Scholar 

  • Sodroski JG, Goh WC, Rosen CA, Salahuddin SZ, Aldovini A, Franchini G, Wong-Staal F, Gallo RC, Sugamura K, Hinuma Y, Haseltine WA (1985b) Trans-activation of the human T-cell leukemia virus long terminal repeat correlates with expression of the x-lor protein. J Virol 55: 831–855

    PubMed  CAS  Google Scholar 

  • Sonnenberg A, van Balen P, Hilgers J, Schuuring E, Nusse R (1987) Oncogene expression during progression of mouse mammary tumor cells; activity of a proviral enhancer and the resulting expression of int-2 is influenced by the state of differentiation. EMBO J 6: 121–125

    PubMed  CAS  Google Scholar 

  • Speck NA, Baltimore D (1987) Six distinct nuclear factors interact with the 75-base-pair repeat of the Moloney murine leukemia virus enhancer. Mol Cell Biol 7: 1101–1110

    PubMed  CAS  Google Scholar 

  • Steffen D (1984) Proviruses are adjacent to c-myc in some murine leukemia virus-induced lymphomas. Proc Natl Acad Sci USA 81: 2097–2101

    PubMed  CAS  Google Scholar 

  • Stewart CL, Stuhlmann H, Jahner D, Jaenisch R (1982) De novo methylation, expression and infectivity of retroviral genomes introduced into embryonal carcinoma cells. Proc Natl Acad Sci USA 79: 4098–4102

    PubMed  CAS  Google Scholar 

  • Stewart TA, Pattengale PK, Leder P (1984) Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38: 627–637

    PubMed  CAS  Google Scholar 

  • Stewart TA, Hollingshead PG, Pitts SL (1988) Multiple regulatory domains in the mouse mammary tumor virus long terminal repeat revealed by analysis of fusion genes in transgenic mice. Mol Cell Biol 8: 473–479

    PubMed  CAS  Google Scholar 

  • Stoltzfus CM, Chang L-J, Cripe TP, Turek LP (1987) Efficient transformation by Prague A Rous sarcoma virus plasmid DNA requires the presence of cis-acting regions within the gag gene. J Virol 61:3401–3409

    PubMed  CAS  Google Scholar 

  • Swanstrom R, DeLorbe WJ, Bishop JM, Varmus HE (1981) Nucleotide sequence of cloned unintegrated avian virus DNA: viral DNA contains direct and inverted repeats similar to those in transposable elements. Proc Natl Acad Sci USA 78: 124–128

    PubMed  CAS  Google Scholar 

  • Taketo M, Tanaka M (1987) A cellular enhancer of retrovirus gene expression in embryonal carcinoma cells. Proc Natl Acad Sci USA 84: 3748–3752

    PubMed  CAS  Google Scholar 

  • Tan T-H, Horikoshi M, Roeder RG (1989) Purification and characterization of multiple nuclear factors that bind to the TAX-inducible enhancer within the human T-cell leukemia virus I long terminal repeat. Mol Cell Biol 9: 1733–1745

    PubMed  CAS  Google Scholar 

  • Terwilliger E, Sodroski JG, Rosen CA, Haseltine WA (1986) Effects of mutations within the 3′ orf open reading frame region of human T-cell lymphotropic virus type III (HTLV-III/LAV) on replication and cytopathogenicity. J Virol 60: 754–760

    PubMed  CAS  Google Scholar 

  • Thiesen H-J, Bosze Z, Henry L, Charnay P (1988) A DNA element responsible for the different tissue specificities of Friend and Moloney retroviral enhancers. J Virol 62: 614–618

    PubMed  CAS  Google Scholar 

  • Thornell A, Hallberg B, Grundstrom T (1988) Differential protein biding in lymphocytes to a sequence in the enhancer of the mouse retrovirus SL3–3. Mol Cell Biol 8: 1625–1637

    PubMed  CAS  Google Scholar 

  • Tong-Starksen SE, Luciw PA, Peterlin BM (1987) Human immunodeficiency virus long terminal repeat responds to T-cell activation signals. Proc Natl Acad Sci USA 84: 6845–6849

    PubMed  CAS  Google Scholar 

  • Toohey MG, Jones KA (1989) In vitro formation of short RNA polymerase II transcripts that terminate within the HIV-1 and HIV-2 promoter-proximal downstream regions. Genes Dev 3:265–282

    PubMed  CAS  Google Scholar 

  • Treisman R (1987) Identification of a polypeptide that binds to the c-fos serum response element. EMBO J 6: 2711–2717

    PubMed  CAS  Google Scholar 

  • Tsubara Y, Imai S, Morimoto J, Tsubura A (1986) Histological distribution of MTV antigen in mice detected by immuno-peroxidase staining. Acta Pathol Jpn 36: 481–486

    Google Scholar 

  • Van Beveren C, Rands C, Chattopadhyay K, Lowy DR, Verma IM (1982) Long terminal repeat of murine retroviral DNAs: sequence analysis, host-proviral junctions, and preintegration site. J Virol 41: 542–556

    PubMed  Google Scholar 

  • van Ooyen AJJ, Michalides R, Nusse R (1984) Structural analysis of a 1.7kb mouse mammary tumor virus-specific RNA. J Virol 45: 362–370

    Google Scholar 

  • Varmus HE (1987) Cellular and viral oncogenes. In: Stamatoyannopoulos G, Nienhuis AW, Leder P, Majerus PW (eds) Molecular basis of blood diseases. Saunders, Philadelphia pp 271–346

    Google Scholar 

  • Viglianti GA, Mullins JI (1988) Functional comparison of transactivation by simian immunodeficiency virus from rhesus macaques and human immunodeficiency virus type 1. J Virol 62: 4523–4532

    PubMed  CAS  Google Scholar 

  • Villemur R, Rassart E, DesGroseillers L, Jolicoeur (1983) Molecular cloning of viral DNA from leukemogenic Gross passage A murine leukemia virus and nucleotide sequence of its long terminal repeat. J Virol 45: 539–546

    PubMed  CAS  Google Scholar 

  • Von der Ahe D, Janich S, Scheidereit C, Renkavitz R, Schütz G, Beato M (1985) Glucocorticoid and progesterone receptors bind to the same sites in two hormonally regulated promoters. Natur 313:706–709

    Google Scholar 

  • Walsh K (1989) Cross-binding of factors to functionally different promoter elements in c-fos and skeletal actin genes. Mol Cell Biol 9: 2191–2201

    PubMed  CAS  Google Scholar 

  • Wano Y, Feinberg M, Hosking JB, Bogerd H, Greene WC (1988) Stable expression of the tax gene of type I human T-cell leukemia virus in human T cells activates specific cellular genes involved in growth. Proc Natl Acad Sci USA 85: 9733–9737

    PubMed  CAS  Google Scholar 

  • Weiher H, Barklis E, Ostertag W, Jaenisch R (1987) Two distinct sequence elements mediate retroviral gene expression in embryonal carcinoma cells. J Virol 61: 2742–2746

    PubMed  CAS  Google Scholar 

  • Wellinger RJ, Garcia M, Vessaz A, Diggelmann H (1986) Exogenous mouse mammary tumor virus proviral DNA isolated from a kidney adenocarcinoma cell line contains alterations in the U3 region of the long terminal repeat. J Virol 60: 1–11

    PubMed  CAS  Google Scholar 

  • Westaway D, Payne G, Varmus HE (1984) Proviral deletions and oncogene base-substitutions in insertionally mutagenized c-myc alleles may contribute to the progression of avian bursal tumors. Proc Natl Acad Sci USA 81: 843–847

    PubMed  CAS  Google Scholar 

  • Wheeler DA, Butel JS, Medina D, Cardiff RD, Hager GL (1983) Transcription of mouse mammary tumor virus: identification of a candidate mRNA for the long terminal repeat gene product. J Virol 46: 42–49

    PubMed  CAS  Google Scholar 

  • Wright CM, Felber BK, Pasklis H, Pautakis GN (1986) Expression and characterisation of the trans-activator of HTLV-III/LAV virus. Science 234: 988–992

    PubMed  CAS  Google Scholar 

  • Wu F, Garcia J, Mitsuyasu R, Gaynor R (1988a) Alterations in binding characteristics of the human immunodeficiency virus enhancer factor. J Virol 62: 218–225

    PubMed  CAS  Google Scholar 

  • Wu FK, Garcia JA, Harrich D, Gaynor RB (1988b) Purification of the human immunodeficiency virus type 1 enhancer and TAR binding proteins EBP-1 and UBP-1, EMBO J 7: 2117–2129

    PubMed  CAS  Google Scholar 

  • Yamamoto KR (1985) Steroid receptor regulated transcription of specific genes and gene networks Annu Rev Genet 19: 209–252

    PubMed  CAS  Google Scholar 

  • Yano O, Kanellopoulos J, Kieran M, Le Bail O, Israel A, Kourilsky P (1987) Purification of KBF1, a common factor binding to both H-2 and α-microglobulin enhancers. EMBO J 6: 3317–3324

    PubMed  CAS  Google Scholar 

  • Yoshida M, Seiki M (1987) Recent advances in the molecular biology of HTLV-I: trans-activation of viral and cellular genes. Annu Rev Immunol 5: 541–559

    PubMed  CAS  Google Scholar 

  • Yoshimura FH, Davison B, Chafflin K (1985) Murine leukemia virus long terminal repeat sequences can enhance gene activity in a cell type-specific manner. Mol Cell Biol 5: 2832–2835

    PubMed  CAS  Google Scholar 

  • Zaret KS, Yamamoto (1984) Reversible and persistent changes in chromatin structure accompany activation of a glucocorticoid-dependent enhancer. Cell 38: 29–38

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Majors, J. (1990). The Structure and Function of Retroviral Long Terminal Repeats. In: Swanstrom, R., Vogt, P.K. (eds) Retroviruses. Current Topics in Microbiology and Immunology, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75218-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75218-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75220-9

  • Online ISBN: 978-3-642-75218-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics