Skip to main content

Rnd Proteins: A New Family of Rho-Related Proteins That Interfere with the Assembly of Filamentous Actin Structures and Cell Adhesion

  • Chapter
Cytoskeleton and Small G Proteins

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 22))

Abstract

Rho family proteins control actin organization. The Rnd proteins form a distinct branch of the Rho family: Rnd1 is expressed mostly in brain and liver, Rnd2 is highly expressed in testis and Rnd3 shows a ubiquitous, very low expression. In brain, Rnd1 is found in specialized neurons, mainly in the cortex, hippocampus and substantia nigra. Rnd1 exchanges GTP rapidly, has a low affinity for GDP, and lacks intrinsic GTPase activity, suggesting that in the cell it is constitutively in the GTP-bound form. Expression of Rnd1 in Swiss 3T3 fibroblasts inhibits the formation of actin stress fibers and induces a loss of focal adhesions and cell/cell contacts, leading to cell rounding (hence Rnd for “round”). In Swiss 3T3 fibroblasts and MDCK cells, Rnd1 localizes to adherens junctions. Thus, Rnd proteins are involved in rearrangements of the actin cytoskeleton and changes in cell adhesion that might play essential roles in cell migration and tumor invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aberle H, Bierkamp C, Torchard D et al. (1995) The human plakoglobin gene localizes on chromosome 17 q21 and is subjected to loss of heterozygosity in breast and ovarian cancers. Proc Natl Acad Sci USA 92:6384–6388

    Article  PubMed  CAS  Google Scholar 

  • Adamson P, Paterson HF, Hall A (1992) Intracellular localization of the p21Rho proteins. J Cell Biol 119:617–627

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Just I (1995) In vitro ADP-ribosylation of Rho by bacterial ADP-ribosyl transferases. Methods in enzymology, 256, part B. Academic Press, New York, pp 184–195

    Google Scholar 

  • Bar-Sagi D, Feramisco JR (1986) Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by Ras proteins. Science 233:1061–1068

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ze’ev A (1997) Cytoskeletal and adhesion proteins as tumor suppressors. Curr Opin Cell Biol 9:99–108

    Article  PubMed  Google Scholar 

  • Birchmeier W, Berhens J (1994) Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1198:11–26

    PubMed  CAS  Google Scholar 

  • Bokoch GM, Bohl BP, Chuang TH (1994) Guanine nucleotide exchange regulates membrane translocation of rac/Rho GTP-binding proteins. J Biol Chem 269:31674–31679

    PubMed  CAS  Google Scholar 

  • Chardin P, Boquet P, Madaule P, Popoff MR, Rubin EJ, Gill DM (1989) The mammalian G protein RhoC is ADP-ribosylated by clostridium botulinum exoenzyme C3 and affects actin microfilaments in Vero cells. EMBO J 8:1087–1092

    PubMed  CAS  Google Scholar 

  • Dallery-Prudhomme E, Roumier C, Denis C, Preudhomme C, Kerckaert JP, Galiegue-Zouitina S (1997) Genomic structure and assignment of the RhoH/TTF small GTPase gene (ARHH) to 4p13 by in situ hybridization. Genomics 43:89–94

    Article  PubMed  CAS  Google Scholar 

  • Der CJ, Finkel T, Cooper GM (1996) Biological and biochemical properties of human H-ras genes mutated at codon 61. Cell 44:167–176

    Article  Google Scholar 

  • Foster R, Hu K-Q, Lu Y, Nolan KM, Thissen J, Settleman J (1996) Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo farnesylation. Mol Cell Biol 16:2689–2699

    PubMed  CAS  Google Scholar 

  • Habets GGM, Scholte EHM, Zuydgeest D, Van der Kammen RA, Stam JC, Berns A, Collard JG (1994) Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell 77:539–547

    Article  Google Scholar 

  • Hirshberg M, Stockley RW, Dodson G, Webb MR (1997) The crystal structure of human rad, a member of the rho-family complexed with a GTP analogue. Nat Str Biol 4:147–151

    Article  CAS  Google Scholar 

  • Huber LA, Ullrich O, Takai Y et al. (1994) Mapping of Ras-related GTP-binding proteins by GTP overlay following two-dimensional gel electrophoresis. Proc Natl Acad Sci USA 91:7874–7878

    Article  PubMed  CAS  Google Scholar 

  • Hughes PE, Renshaw MW, Pfaff M et al. (1997) Suppression of integrin activation: a novel function of a Ras/raf-initiated MAP Kinase pathway. Cell 88:521–530

    Article  PubMed  CAS  Google Scholar 

  • John J, Frech M, Wittinghofer A (1988) Biochemical properties of H-Ras encoded p21 mutants and mechanism of the autophosphorylation reaction J Biol Chem 263:11792–11799

    CAS  Google Scholar 

  • Kimura K, Ito M, Amano M et al. (1996) Regulation of myosin phosphatase by Rho and Rhoassociated kinase. Science 273:245–248

    Article  PubMed  CAS  Google Scholar 

  • Murphy C, Saffrich R, Grummt M, Gournier H, Rybin V, Rubino M, Auvinen P, Lutcke A, Parton RG, Zerial M (1996) Endosome dynamics regulated by a Rho protein. Nature 384:427–432

    Article  PubMed  CAS  Google Scholar 

  • Nobes CD, Hall A (1995) Rho, rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    Article  PubMed  CAS  Google Scholar 

  • Nobes CD, Lauritzen I, Mattei M-G, Paris S, Hall A, Chardin P (1998) A new member of the Rho family, Rndl, promotes disassembly of actin filament structures and loss of cell adhesion. J Cell Biol 141:187–197

    Article  PubMed  CAS  Google Scholar 

  • Olson MF, Ashworth A, Hall A (1995) An essential role for Rho, rac, and Cdc42 GTPases in cell cycle progression through G1. Science 269:1270–1272

    Article  PubMed  CAS  Google Scholar 

  • Pai E, Krengel U, Petsko GA et al. (1990) Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J 9:2351–2359

    PubMed  CAS  Google Scholar 

  • Prendergast GC, Davide JP, deSolms SJ et al. (1994) Farnesyltransferase inhibition causes morphological reversion of Ras-transformed cells by a complex mechanism that involves regulation of the actin cytoskeleton. Mol Cell Biol 14:4193–4202

    PubMed  CAS  Google Scholar 

  • Qiu R.-G, Chen J, Kirn D, McCormick F, Symons M (1995a) An essential role for rac in Ras transformation. Nature 374:457–459

    Article  CAS  Google Scholar 

  • Qiu R-G, Chen J, McCormick F, Symons M (1995b) A role for Rho in Ras transformation. Proc Natl Acad Sci USA 92:11781–11785

    Article  CAS  Google Scholar 

  • Ridley AJ, Hall A (1992) The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Patterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factorinduced membrane ruffling. Cell 70:401–410

    Article  PubMed  CAS  Google Scholar 

  • Russell LD (1993) In: Russell LD, Griswold MD (eds) The sertoli cell Cache River Press, Florida

    Google Scholar 

  • Smith TM, Lee MK, Szabo CI, Jerome N et al. (1996) Complete genomic sequence and analysis of 117kb of human DNA containing the gene BRCA1. Genome Res 6:1029–1049

    Article  PubMed  CAS  Google Scholar 

  • Symons M (1996) Rho family GTPases: the cytoskeleton and beyond. Trends Biochem Sci 21:178–181

    PubMed  CAS  Google Scholar 

  • Tsukita S, Yonemura S, Tsukita S (1997) ERM family: from cytoskeleton to signal transduction. Curr Opin Cell Biol 9:70–75

    Article  PubMed  CAS  Google Scholar 

  • Van Aelst L, D’Souza-Schorey C (1997) Rho GTPases and signaling networks. Genes Dev 11:2295–2322

    Google Scholar 

  • Wei Y, Zhang Y, Derewanda U, Liu X, Minor W, Nakamoto RK, Somlyo AV, Somlyo AP, Derewanda ZS (1997) Crystal structure of RhoA-GDP and its functional implications. Nat Str Biol 4:699–703

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chardin, P. (1999). Rnd Proteins: A New Family of Rho-Related Proteins That Interfere with the Assembly of Filamentous Actin Structures and Cell Adhesion. In: Jeanteur, P. (eds) Cytoskeleton and Small G Proteins. Progress in Molecular and Subcellular Biology, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58591-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58591-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63659-2

  • Online ISBN: 978-3-642-58591-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics