Abstract
Low-grade gliomas (WHO grade II) are diffusively infiltrative brain tumors arising from glial cells. Spatial classification that is usually based on cerebral lobes lacks accuracy and is far from being able to provide some pattern or statistical interpretation of their appearance. In this paper, we propose a novel approach to understand and infer position of low-grade gliomas using a graphical model. The problem is formulated as a graph topology optimization problem. Graph nodes correspond to extracted tumors and graph connections to the spatial and content dependencies among them. The task of spatial position mapping is then expressed as an unsupervised clustering problem, where cluster centers correspond to centers with position appearance prior, and cluster samples to nodes with strong statistical dependencies on their position with respect to the cluster center. Promising results using leave-one-out cross-validation outperform conventional dimensionality reduction methods and seem to coincide with conclusions drawn in physiological studies regarding the expected tumor spatial distributions and interactions.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Duffau, D.: Surgery of low-grade gliomas: towards a ’functional neurooncology’. Current Opinion in Oncology 21(6), 543–549 (2009)
Sofetti, R., Baumert, B., Bello, L., et al.: Guidelines on management of low-grade gliomas: report of an EFNS-EANO task force. Eur. J. Neurol. 17, 1124–1133 (2010)
Larjavaara, S., Mantyla, R., Salminen, T., et al.: Incidence of gliomas by anatomic location. Neuro-oncology 9, 319–325 (2007)
Duffau, H., Capelle, L.: Preferential brain locations of low-grade gliomas. Cancer 100, 2622–2626 (2004)
Shlens, J.: A tutorial on Principal Component Analysis. Systems Neurobiology Laboratory, Salk Institute for Biological Studies (2005)
Hyvarinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural. Netw. 13, 411–430 (2000)
Tenenbaum, J.B., Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)
Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: NIPS (2001)
Zheng, X., Rajapakse, J.C.: Learning functional structure from fMR images. Neuroimage 31, 1601–1613 (2006)
Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009)
Komodakis, N., Paragios, N., Tziritas, G.: Clustering via LP-based Stabilities. In: NIPS, pp. 865–872 (2008)
Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Medical Image Analysis 12, 731–741 (2008)
Pokrajac, D., Megalooikonomou, V., Lazarevic, A., Kontos, K., Obradovic, Z.: Applying spatial distribution analysis techniques to classification of 3D medical images. Artificial Intelligence in Medicine 33, 261–280 (2005)
Dunn, J.C.: Well separated clusters and optimal fuzzy partitions. J. Cybern. 4, 95–104 (1974)
Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. on PAMI 1(4), 224–227 (1979)
Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)
Torresani, L., Kolmogorov, V., Rother, C.: Feature correspondence via graph matching: Models and global optimization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 596–609. Springer, Heidelberg (2008)
Sotiras, A., Komodakis, N., Glocker, B., Deux, J.-F., Paragios, N.: Graphical models and deformable diffeomorphic population registration using global and local metrics. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 672–679. Springer, Heidelberg (2009)
Glocker, B., Paragios, N., Komodakis, N., Tziritas, G., Navab, N.: Optical Flow Estimation with Uncertainties through Dynamic MRFs. In: CVPR (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Parisot, S., Duffau, H., Chemouny, S., Paragios, N. (2011). Graph Based Spatial Position Mapping of Low-Grade Gliomas. In: Fichtinger, G., Martel, A., Peters, T. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2011. MICCAI 2011. Lecture Notes in Computer Science, vol 6892. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23629-7_62
Download citation
DOI: https://doi.org/10.1007/978-3-642-23629-7_62
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23628-0
Online ISBN: 978-3-642-23629-7
eBook Packages: Computer ScienceComputer Science (R0)