Abstract
Heparan sulphate (HS), discovered in 1948 in heparin by-products, only emerged slowly from the shadow of heparin. Its inauspicious beginning was followed by the gradual realisation that HS was a separate entity with distinctive features. Both HS and heparin follow a common biosynthetic route but while heparin reaches full maturity, HS holds on to some of its youthful traits. The novel design and complex patterning of sulphation in HS enable it fulfil key roles in many, diverse biological processes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ai X, Do AT, Lozynska O, Kusche-Gullberg M, Lindahl U, Emerson CP Jr (2003) Qsulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J Cell Biol 162:341–351
Ai X, Do AT, Kusche-Gullberg M, Lindahl U, Lu K, Emerson CP Jr (2006) Substrate specificity and domain functions of extracellular heparan sulfate 6-O-endosulfatases, Qsulf1 and Qsulf2. J Biol Chem 281:4969–4976
Baldwin RJ, ten Dam GB, van Kuppevelt TH, Lacaud G, Gallagher JT, Kouskoff V et al (2008) A developmentally regulated heparan sulfate epitope defines a subpopulation with increased blood potential during mesodermal differentiation. Stem Cells 26:3108–3118
Bellache Y, The I, Perrimon N (1998) Tout-velu is a Drosophila homologue of the putative tumour suppressor Ext-1 and is neede for Hh diffusion. Nature 394:85–88
Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446:1030–1037
Bornemann DJ, Duncan JE, Staatz W, Selleck S, Warrior R (2004) Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways. Development 131:1927–1938
Bullock SL, Fletcher JM, Beddington RS, Wilson VA (1998) Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev 12:1894–1906
Bulow HE, Hobert O (2006) The molecular diversity of glycosaminoglycans shapes animal development. Annu Rev Cell Dev Biol 22:375–407
Carlsson P, Kjellén L (2011) Heparin biosynthesis. In: Lever R, Mulloy B, Page CP (eds) Heparin – a century of progress. Springer, Heidelberg
Casu B, Lindahl U (2001) Structure and biological interactions of heparin and heparan sulfate. Adv Carbohydr Chem Biochem 57:159–206
Cifonelli JA (1968) Reaction of heparitin sulphate with nitrous acid. Carbohydr Res 8:233–242
Couchman JR, Chen L, Woods A (2001) Syndecans and cell adhesion. Int Rev Cytol 207:113–150
David G, Lories V, Decock B, Marynen P, Cassiman JJ, Van den Berghe H (1990) Molecular cloning of a phosphatidylinositol-anchored membrane heparan sulfate proteoglycan from human lung fibroblasts. J Cell Biol 111:3165–3176
Deakin JA, Blaum BS, Gallagher JT, Uhrin D, Lyon M (2009) The binding properties of minimal oligosaccharides reveal a common heparan sulphate/dermatan sulphate binding site in hepatocyte growth factor/scatter factor that can accommodate a wide variety of sulphation patterns. J Biol Chem 284:6311–6322
Desai UR, Wang HM, Linhardt RJ (1993) Substrate specificity of the heparin lyases from Flavobacterium heparinum. Arch Biochem Biophys 306:461–468
Dhoot GK, Gstafsson MK, Ai X, Sun W, Standford DM, Emerson CP (2001) Regulation of Wnt signalling and embryo patterning by an extracellular sulfatase. Science 293:1663–1666
Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471
Faham S, Hileman RE, Fromm JR, Linhardt RJ, Ress DC (1996) Heparin structure and interactions with basic fibroblast growth factor. Science 23:1116–1120
Frese MA, Milz F, Dick M, Lamanna WC, Dierks T (2009) Characterisation of the human sulfatase sulf1 and its high affinity heparin/heparan sulphate interaction domain. J Biol Chem 284:28033–28044
Gallagher JT (2001) Heparan sulfate: growth control with a restricted sequence menu. J Clin Invest 108:357–361
Gallagher JT, Lyon M (2000) Heparan sulphate; molecular structure and interactions with growth factors and morphogens. In: Iozzo RV (ed) Proteoglycans, structure, biology and molecular interactions. Marcel Dekker, New York
Goodger SJ, Robinson CJ, Murphy KJ, Gasiunas N, Harmer NJ, Blundell TL, Gallagher JT (2008) Evidence that heparin saccharides promote FGF2 mitogenesis through two distinct mechanisms. J Biol Chem 283:13001–13008
Guimond S, Maccarana M, Olwin BB, Lindahl U, Rapraeger AC (1993) Activating and inhibitory heparin sequences for FGF-2 (basic FGF). Distinct requirements for FGF-1, FGF-2, and FGF-4. J Biol Chem 268:23906–23914
Han C, Belenkaya TY, Khodoun M, Tauchi M, Lin X (2004) Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation. Development 131:1563–1575
Hovingh P, Linker A (1970) The enzymatic degradation of heparin and heparitin sulphate. J Biol Chem 245:6170–6175
Jastrebova N, Vanwildemeersch M, Rapraeger AC, Gimenez-Gallego G, Lindahl U, Spillmann D (2006) Heparan sulfate-related oligosaccharides in ternary complex formation with fibroblast growth factors 1 and 2 and their receptors. J Biol Chem 281:26884–26892
Jorpes JE, Gardell S (1948) On heparin monosulfuric acid. J Biol Chem 176:267–275
Knecht J, Cifonelli JA, Dorfman A (1967) Structural studies on heparitin sulphate of normal and Hurler tissues. J Biol Chem 242:4652–4661
Kraemer PM (1971a) Heparan sulfates of cultured cells. 1. Membrane-associated and cell sap species in Chinese hamster cells. Biochemistry 10:1437–1445
Kraemer PM (1971b) Heparan sulfates of cultured cells. 11 Acid soluble and precipitable species of different cell lines. Biochemistry 10:1445–1451
Kramer KL, Yost HJ (2002) Ectodermal syndecan-2 mediates left-right axis formation in migrating mesoderm as a cell-nonautonomous Vg1 cofactor. Dev Cell 2:115–124
Kreuger J, Spillmann D, Li JP, Lindahl U (2006) Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol 174:323–327
Lamanna WC, Baldwin RJ, Pavda M, Kalus I, ten Dam G, van Kuppvelt TH, Gallagher JT, Von Figura K, Dierks T, Merry CL (2006) Heparan sulphate 6-O-endosulphatases; discrete in vivo activities and functional co-operativity. Biochem J 400:63–73
Lamanna WC, Kalus I, Padva M, Baldwin RJ, Merry CL, Dierks T (2007) The heparanome – the enigma of encoding and decoding heparan sulfate sulfation. J Biotechnol 129:290–307
Ledin J, Staatz W, Li JP, Gotte M, Selleck S, Kjellen L, Spillmann D (2004) Heparan sulphate structure in mice with genetically-modified heparan sulphate production. J. Biol. Chem. 279: 42732–42741
Lin X, Perrimon N (1999) Dally cooperates with Drosophila Frizzled 2 to transducer wingless signalling. Nature 400:281–284
Lindahl U, Li JP (2009) Interactions between heparan sulphate and proteins-design and functional implications. Int Rev Cell Mol Biol 276:105–159
Lindahl U, Kusche M, Lidholt K, Oscarsson LG (1989) Biosynthesis of heparin and heparan sulfate. Ann N Y Acad Sci 556:36–50
Lortat-Jacob H (2009) The molecular basis and functional implications of chemokine interactions with heparan sulphate. Curr Opin Struct Biol 19:543–548
Lortat-Jacob H, Grimaud JA (1991) Interferon γ binds to heparan sulphate by a cluster of amino acids located in the C-terminus part of the molecule. FEBS Lett 280:152–154
Lortat-Jacob H, Turnbull JE, Grimaud JA (1995) Molecular organization of the interferon γ-binding domain in heparan sulphate. Biochem J 310:497–505
Lyon M, Gallagher JT (1998) Biospecific sequences and domains in heparan sulphate and the regulation of cell growth and adhesion. Matrix Biol 17:485–493
Maccarana M, Casu B, Lindahl U (1993) Minimal sequence in heparin/heparan sulfate required for binding of basic fibroblast growth factor. J Biol Chem 268:23898–23905
Merry CL, Lyon M, Deakin JA, Hopwood JJ, Gallagher JT (1999) Highly sensitive sequencing of the sulphated domains of heparan sulphate. J Biol Chem 274:18455–18462
Mulloy B, Forster MJ (2000) Conformation and dynamics of heparin and heparan sulfate. Glycobiology 10:1147–1156
Murphy K, Merry CL, Lyon M, Thompson J, Roberts I, Gallagher JT (2004) A new model for the domain structure of heparan sulphate based on the novel specificity of K5 lyase. J Biol Chem 279:27239–27245
Nakato H, Fox B, Selleck SB (2002) Dally, a Drosophila member of the glypican family of integral membrane proteoglycans, affects cell cycle progression and morphogenesis by a cyclin A mediated process. J Cell Sci 115:123–130
Oldberg A, Kjellen L, Hook M (1979) Cell surface heparan sulphate. Isolation and characterisation form rat liver membranes. J Biol Chem 254:8505–8510
Ori A, Wilkinson MC, Fernig DG (2011) A systems biology approach for investigation of the heparin/heparan sulphate interactome. J. Biol. Chem. 286;19892–19904
Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL (2000) Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407:1029–1034
Petitou M, van Boeckel CA (2004) A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next? Angew Chem Int Ed Engl 43:3118–3133
Potzinger H, Geretti E, Brander B, Wabitsch V, Piccinini AM, Rek A, Kungl A (2006) Developing chemokine mutants with improved proteoglycan affinity and knocked-out GPCR as anti-inflammatory recombinant drugs. Biochem Soc Trans 34:435–437
Proudfoot AE (2006) The biological relevance of chemokine-proteoglycan interactions. Biochem Soc Trans 34:422–426
Pye D, Vives R, Turnbull JE, Hyde P, Gallagher JT (1998) Heparan sulphate oligosaccharides require 6-O sulphation for promotion of basic fibroblast factor mitogeneic activity. J Biol Chem 273:1183–1192
Rapraeger A, Kufka A, Olwin BB (1991) Requirement for heparan sulphate for bFGF-mediated growth and myoblast differentiation. Science 253:1705–1708
Robinson CJ, Harmer NJ, Godger SJ, Blundell TL, Gallagher JT, (2005) Cooperative dimerisation of fibroblast growth factor 1 upon a single heparin saccharide may drive the formation of a 2:2:1 FGF1:FGFR2c:heparin ternary complex. J.Biol.Chem. 280:42274–42282
Saunders S, Jalkanen M, O’farrell S, Bernfield M (1989) Molecular cloning of syndecan, an integral membrane proteoglycan. J Cell Biol 108:1547–1556
Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, Linhardt RJ, Mohammadi M (2000) Crystal structure of a ternary FGF–FGFR–heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 6:743–747
Shi X, Zaia J (2009) Organ specific heparan sulphate structural phenotypes. J. Biol. Chem. 284;11806–11814
Shukla D, Liu J, Blaiklock P, Shworak NW, Bai X, Esko JD, Cohen GH, Eisenberg RJ, Rosenberg RD, Spear RJ (1999) A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99:13–22
Silva ME, Dietrich CP, Nader HB (1976) On the structure of heparitin sulfates. Analysis of products formed from heparitin sulfates and heparin by two heparitinases and heparinise from Flavobacterium heparinum. Biochem Biophys Acta 437:129–141
Spillmann D, Lookene A, Olivecrona G (2006) Isolation and characterization of low sulfated heparan sulfate sequences with affinity for lipoprotein lipase. J Biol Chem 281:23405–23413
Turnbull JE, Gallagher JT (1990) Molecular organisation of heparan sulphate from human skin fibroblasts. Biochem J 265:715–724
Turnbull JE, Gallagher JT (1991a) Distribution of iduronate-2-sulphate residues in heparin sulphate; evidence for an ordered polymeric structure. Biochem J 273:553–559
Turnbull JE, Gallagher JT (1991b) Sequence analysis of heparan sulphate indicates defined locations of N-sulphated glucosamine and iduronate-2-sulphate residues proximal to the protein-linkage region. Biochem J 277:297–303
Turnbull JE, Fernig DG, Ye Y, Wilkinson MC, Gallagher JT (1992) Identification of the basic fibroblast factor binding sequence in heparan sulfate. J Biol Chem 267:10337–10341
Turnbull JE, Hopwood JJ, Gallagher JT (1999) A strategy for rapid sequencing of heparan sulphate and heparin saccharides. Proc Natl Acad Sci USA 96:2698–2703
Uchimura K, Morimoto-Tomita M, Bistrup A, Li J, Lyon M, Gallagher J, Werb Z, Rosen S (2006) Hsulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilises heparin- bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1. BMC Biochem 7:2
Venkataraman G, Shriver Z, Raman R, Sasisekharan R (1999) Sequencing complex polysaccharides. Science 286:537–542
Viviano BL, Paine-Saunders S, Gasiunas N, Gallagher J, Saunders S (2004) Domain-specific modification of heparan sulfate by Qsulf1 modulates the binding of the bone morphogenetic protein antagonist Noggin. J Biol Chem 279:5604–5611
Yang B, Solakyildirim K, Chang Y, Linhardt RJ (2011) Hyphenated techniques for the analysis of heparin and heparan sulphate. Chemistry and Materials Science 341:541–557
Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64:841–848
Zhang L, David G, Esko JD (1995) Repetitive ser-gly sequences enhance heparan sulphate assembly in proteoglycans. J.Biol. Chem. 270; 27127–27135
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Gallagher, J.T. (2012). Heparan Sulphate: A Heparin in Miniature. In: Lever, R., Mulloy, B., Page, C. (eds) Heparin - A Century of Progress. Handbook of Experimental Pharmacology, vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23056-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-23056-1_15
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23055-4
Online ISBN: 978-3-642-23056-1
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)