Skip to main content

SUMO, the Three Rs and Cancer

  • Chapter
Acute Promyelocytic Leukemia

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 313))

Abstract

SUMO modification (sumoylation) plays important roles in nucleocytoplasmic transport, maintenance of sub-nuclear architecture, the regulation of gene expression and in DNA replication, repair and recombination. Here we review recent evidence for SUMO’s role in protecting genomic integrity at both the chromosomal and the DNA level. Furthermore, the involvement of sumoylation and of specific SUMO targets in cancer is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. al-Khodairy F, Enoch T, Hagan IM, Carr AM (1995) The Schizosaccharomyces pombe hus5 gene encodes a ubiquitin conjugating enzyme required for normal mitosis. J Cell Sci 108:475–486

    PubMed  CAS  Google Scholar 

  2. Andrews EA, Palecek J, Sergeant J, Taylor E, Lehmann AR, Watts FZ (2005) Nse2, a component of the Smc5–6 complex, is a SUMO ligase required for the response to DNA damage. Mol Cell Biol 25:185–196

    Article  PubMed  CAS  Google Scholar 

  3. Apionishev S, Malhotra D, Raghavachari S, Tanda S, Rasooly RS (2001) The Drosophila UBC9 homologue lesswright mediates the disjunction of homologues in meiosis I. Genes Cells 6:215–224

    Article  PubMed  CAS  Google Scholar 

  4. Azuma Y, Arnaoutov A, Anan T, Dasso M (2005) PIASy mediates SUMO-2 conjugation of Topoisomerase-II on mitotic chromosomes. EMBO J 24:2172–2182

    Article  PubMed  CAS  Google Scholar 

  5. Azuma Y, Arnaoutov A, Dasso M (2003) SUMO-2/3 regulates topoisomerase II in mitosis. J Cell Biol 163:477–487

    Article  PubMed  CAS  Google Scholar 

  6. Baba D, Maita N, Jee JG, Uchimura Y, Saitoh H, Sugasawa K, Hanaoka F, Tochio H, Hiroaki H, Shirakawa M (2005) Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 435:979–982

    Article  PubMed  CAS  Google Scholar 

  7. Bachant J, Alcasabas A, Blat Y, Kleckner N, Elledge SJ (2002) The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA topoisomerase II. Mol Cell 9:1169–1182

    Article  PubMed  CAS  Google Scholar 

  8. Bachrati CZ, Hickson ID (2003) RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem J 374:577–606

    Article  PubMed  CAS  Google Scholar 

  9. Biggins S, Bhalla N, Chang A, Smith DL, Murray AW (2001) Genes involved in sister chromatid separation and segregation in the budding yeast Saccharomyces cerevisiae. Genetics 159:453–470

    PubMed  CAS  Google Scholar 

  10. Bischof O, Kim SH, Irving J, Beresten S, Ellis NA, Campisi J (2001) Regulation and localization of the bloom syndrome protein in response to DNA damage. J Cell Biol 153:367–380

    Article  PubMed  CAS  Google Scholar 

  11. Bischof O, Nacerddine K, Dejean A (2005) Human papillomavirus oncoprotein E7 targets the promyelocytic leukemia protein and circumvents cellular senescence via the Rb and p53 tumor suppressor pathways. Mol Cell Biol 25:1013–1024

    Article  PubMed  CAS  Google Scholar 

  12. Bjerling P, Ekwall K (2002) Centromere domain organization and histone modifications. Braz J Med Biol Res 35:499–507

    Article  PubMed  CAS  Google Scholar 

  13. Bohren KM, Nadkarni V, Song JH, Gabbay KH, Owerbach D (2004) A M55 V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem 279:27233–27238

    Article  PubMed  CAS  Google Scholar 

  14. Bringold F, Serrano M (2000) Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol 35:317–329

    Article  PubMed  CAS  Google Scholar 

  15. Broday L, Kolotuev I, Didier C, Bhoumik A, Gupta BP, Sternberg PW, Podbilewicz B, Ronai Z (2004) The small ubiquitin-like modifier (SUMO) is required for gonadal and uterine-vulval morphogenesis in Caenorhabditis elegans. Genes Dev 18:2380–2391

    Article  PubMed  CAS  Google Scholar 

  16. Campisi J (2005) Aging, tumor suppression and cancer: high wire-act! Mech Ageing Dev 126:51–58

    Article  PubMed  CAS  Google Scholar 

  17. Chen L, Chen J (2003) MDM2-ARF complex regulates p53 sumoylation. Oncogene 22:5348–5357

    Article  PubMed  CAS  Google Scholar 

  18. Chen XL, Reindle A, Johnson ES (2005) Misregulation of 2 micron circle copy number in a SUMO pathway mutant. Mol Cell Biol 25:4311–4320

    Article  PubMed  CAS  Google Scholar 

  19. D’Amours D, Stegmeier F, Amon A (2004) Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA. Cell 117:455–469

    Article  PubMed  CAS  Google Scholar 

  20. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  PubMed  CAS  Google Scholar 

  21. Davalos AR, Campisi J (2003) Bloom syndrome cells undergo p53-dependent apoptosis and delayed assembly of BRCA1 and NBS1 repair complexes at stalled replication forks. J Cell Biol 162:1197–1209

    Article  PubMed  CAS  Google Scholar 

  22. Dimri GP (2005) What has senescence got to do with cancer? Cancer Cell 7:505–512

    Article  PubMed  CAS  Google Scholar 

  23. Dohmen RJ, Stappen R, McGrath JP, Forrova H, Kolarov J, Goffeau A, Varshavsky A (1995) An essential yeast gene encoding a homolog of ubiquitin-activating enzyme. J Biol Chem 270:18099–18109

    Article  PubMed  CAS  Google Scholar 

  24. Eladad S, Ye TZ, Hu P, Leversha M, Beresten S, Matunis MJ, Ellis NA (2005) Intranuclear trafficking of the BLM helicase to DNA damage-induced foci is regulated by SUMO modification. Hum Mol Genet 14:1351–1365

    Article  PubMed  CAS  Google Scholar 

  25. Ellis NA, German J (1996) Molecular genetics of Bloom’s syndrome. Hum Mol Genet 5 Spec No:1457–1463

    PubMed  CAS  Google Scholar 

  26. Epps JL, Tanda S (1998) The Drosophila semushi mutation blocks nuclear import of bicoid during embryogenesis. Curr Biol 8:1277–1280

    Article  PubMed  CAS  Google Scholar 

  27. Everett RD, Earnshaw WC, Pluta AF, Sternsdorf T, Ainsztein AM, Carmena M, Ruchaud S, Hsu WL, Orr A (1999) A dynamic connection between centromeres and ND10 proteins. J Cell Sci 112:3443–3454

    PubMed  CAS  Google Scholar 

  28. Fabre F, Chan A, Heyer WD, Gangloff S (2002) Alternate pathways involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc Natl Acad Sci U S A 99:16887–16892

    Article  PubMed  CAS  Google Scholar 

  29. Franchitto A, Pichierri P (2002) Bloom’s syndrome protein is required for correct relocalization of RAD50/MRE11/NBS1 complex after replication fork arrest. J Cell Biol 157:19–30

    Article  PubMed  CAS  Google Scholar 

  30. Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408:325–330

    Article  PubMed  CAS  Google Scholar 

  31. Gangloff S, McDonald JP, Bendixen C, Arthur L, Rothstein R (1994) The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol Cell Biol 14:8391–8398

    PubMed  CAS  Google Scholar 

  32. Gharibyan V, Youssoufian H (1999) Localization of the Bloom syndrome helicase to punctate nuclear structures and the nuclear matrix and regulation during the cell cycle: comparison with the Werner’s syndrome helicase. Mol Carcinog 26:261–273

    Article  PubMed  CAS  Google Scholar 

  33. Gill G (2003) Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity. Curr Opin Genet Dev 13:108–113

    Article  PubMed  CAS  Google Scholar 

  34. Gocke CB, Yu H, Kang J (2005) Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. J Biol Chem 280:5004–5012

    Article  PubMed  CAS  Google Scholar 

  35. Gostissa M, Hengstermann A, Fogal V, Sandy P, Schwarz SE, Scheffner M, Del Sal G (1999) Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J 18:6462–6471

    Article  PubMed  CAS  Google Scholar 

  36. Gray MD, Wang L, Youssoufian H, Martin GM, Oshima J (1998) Werner helicase is localized to transcriptionally active nucleoli of cycling cells. Exp Cell Res 242:487–494

    Article  PubMed  CAS  Google Scholar 

  37. Guacci V, Koshland D, Strunnikov A (1997) A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91:47–57

    Article  PubMed  CAS  Google Scholar 

  38. Haracska L, Torres-Ramos CA, Johnson RE, Prakash S, Prakash L (2004) Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Mol Cell Biol 24:4267–4274

    Article  PubMed  CAS  Google Scholar 

  39. Hardeland U, Steinacher R, Jiricny J, Schar P (2002) Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J 21:1456–1464

    Article  PubMed  CAS  Google Scholar 

  40. Hari KL, Cook KR, Karpen GH (2001) The Drosophila Su(var)2–10 locus regulates chromosome structure and function and encodes a member of the PIAS protein family. Genes Dev 15:1334–1348

    Article  PubMed  CAS  Google Scholar 

  41. Hartman T, Stead K, Koshland D, Guacci V (2000) Pds5p is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae. J Cell Biol 151:613–626

    Article  PubMed  CAS  Google Scholar 

  42. Hayashi T, Seki M, Maeda D, Wang W, Kawabe Y, Seki T, Saitoh H, Fukagawa T, Yagi H, Enomoto T (2002) Ubc9 is essential for viability of higher eukaryotic cells. Exp Cell Res 280:212–221

    Article  PubMed  CAS  Google Scholar 

  43. Hirano T (2005) Cell biology: holding sisters for repair. Nature 433:467–468

    Article  PubMed  CAS  Google Scholar 

  44. Ho JC, Warr NJ, Shimizu H, Watts FZ (2001) SUMO modification of Rad22, the Schizosaccharomyces pombe homologue of the recombination protein Rad52. Nucleic Acids Res 29:4179–4186

    Article  PubMed  CAS  Google Scholar 

  45. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141

    Article  PubMed  CAS  Google Scholar 

  46. Horie K, Tomida A, Sugimoto Y, Yasugi T, Yoshikawa H, Taketani Y, Tsuruo T (2002) SUMO-1 conjugation to intact DNA topoisomerase I amplifies cleavable complex formation induced by camptothecin. Oncogene 21:7913–7922

    Article  PubMed  CAS  Google Scholar 

  47. Huang L, Ohsako S, Tanda S (2005) The lesswright mutation activates Relrelated proteins, leading to overproduction of larval hemocytes in Drosophila melanogaster. Dev Biol 280:407–420

    Article  PubMed  CAS  Google Scholar 

  48. Isik S, Sano K, Tsutsui K, Seki M, Enomoto T, Saitoh H (2003) The SUMO pathway is required for selective degradation of DNA topoisomerase IIbeta induced by a catalytic inhibitor ICRF-193(1). FEBS Lett 546:374–378

    Article  PubMed  CAS  Google Scholar 

  49. Jacquiau HR, van Waardenburg RC, Reid RJ, Woo MH, Guo H, Johnson ES, Bjornsti MA (2005) Defects in SUMO (small ubiquitin-related modifier) conjugation and deconjugation alter cell sensitivity to DNA topoisomerase I-induced DNA damage. J Biol Chem 280:23566–23575

    Article  PubMed  CAS  Google Scholar 

  50. Jiang WQ, Zhong ZH, Henson JD, Neumann AA, Chang ACM, Reddel RR (2005) Suppression of alternative lengthening of telomeres by sp100-mediated sequestration of the MRE11/RAD50/NBS1 complex. Mol Cell Biol 25:2708–2721

    Article  PubMed  CAS  Google Scholar 

  51. Johnson ES, Gupta AA (2001) An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106:735–744

    Article  PubMed  CAS  Google Scholar 

  52. Johnson ES, Schwienhorst I, Dohmen RJ, Blobel G (1997) The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J 16:5509–5519

    Article  PubMed  CAS  Google Scholar 

  53. Jones D, Crowe E, Stevens TA, Candido EP (2002) Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol 3

    Google Scholar 

  54. Kagey MH, Melhuish TA, Wotton D (2003) The polycomb protein Pc2 is a SUMO E3. Cell 113:127–137

    Article  PubMed  CAS  Google Scholar 

  55. Kannouche PL, Wing J, Lehmann AR (2004) Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell 14:491–500

    Article  PubMed  CAS  Google Scholar 

  56. Kawabe Y, Seki M, Seki T, Wang WS, Imamura O, Furuichi Y, Saitoh H, Enomoto T (2000) Covalent modification of the Werner’s syndrome gene product with the ubiquitin-related protein, SUMO-1. J Biol Chem 275:20963–20966

    Article  PubMed  CAS  Google Scholar 

  57. Kinzler KW, Vogelstein B (1997) Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386:761–763

    Article  PubMed  CAS  Google Scholar 

  58. Krejci L, Van Komen S, Li Y, Villemain J, Reddy MS, Klein H, Ellenberger T, Sung P (2003) DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423:305–309

    Article  PubMed  CAS  Google Scholar 

  59. Kwek SS, Derry J, Tyner AL, Shen Z, Gudkov AV (2001) Functional analysis and intracellular localization of p53 modified by SUMO-1. Oncogene 20:2587–2599

    Article  PubMed  CAS  Google Scholar 

  60. Ledl A, Schmidt D, Muller S (2005) Viral oncoproteins E1A and E7 and cellular LxCxE proteins repress SUMO modification of the retinoblastoma tumor suppressor. Oncogene 24:3810–3818

    Article  PubMed  CAS  Google Scholar 

  61. Li SJ, Hochstrasser M (1999) A new protease required for cell-cycle progression in yeast. Nature 398:246–251

    Article  PubMed  CAS  Google Scholar 

  62. Li SJ, Hochstrasser M (2000) The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol Cell Biol 20:2367–2377

    Article  PubMed  CAS  Google Scholar 

  63. Li TK, Liu LF (2001) Tumor cell death induced by topoisomerase-targeting drugs. Annu Rev Pharmacol Toxicol 41:53–77

    Article  PubMed  Google Scholar 

  64. Li W, Hesabi B, Babbo A, Pacione C, Liu J, Chen DJ, Nickoloff JA, Shen Z (2000) Regulation of double-strand break-induced mammalian homologous recombination by UBL1, a RAD51-interacting protein. Nucleic Acids Res 28:1145–1153

    Article  PubMed  CAS  Google Scholar 

  65. Lois LM, Lima CD, Chua NH (2003) Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis. Plant Cell 15:1347–1359

    Article  PubMed  CAS  Google Scholar 

  66. Losada A, Hirano T (2005) Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev 19:1269–1287

    Article  PubMed  CAS  Google Scholar 

  67. Lowe SW, Cepero E, Evan G (2004) Intrinsic tumour suppression. Nature 432:307–315

    Article  PubMed  CAS  Google Scholar 

  68. Mao Y, Desai SD, Liu LF (2000) SUMO-1 conjugation to human DNA topoisomerase II isozymes. J Biol Chem 275:26066–26073

    Article  PubMed  CAS  Google Scholar 

  69. Mao Y, Sun M, Desai SD, Liu LF (2000) SUMO-1 conjugation to topoisomerase I: a possible repair response to topoisomerase-mediated DNA damage. Proc Natl Acad Sci U S A 97:4046–4051

    Article  PubMed  CAS  Google Scholar 

  70. Marciniak RA, Lombard DB, Johnson FB, Guarente L (1998) Nucleolar localization of the Werner syndrome protein in human cells. Proc Natl Acad Sci USA 95:6887–6892

    Article  PubMed  CAS  Google Scholar 

  71. Matunis MJ, Pickart CM (2005) Beginning at the end with SUMO. Nat Struct Mol Biol 12:565–566

    Article  PubMed  CAS  Google Scholar 

  72. McDonald WH, Pavlova Y, Yates JR 3rd, Boddy MN (2003) Novel essential DNA repair proteins Nse1 and Nse2 are subunits of the fission yeast Smc5-Smc6 complex. J Biol Chem 278:45460–45467

    Article  PubMed  CAS  Google Scholar 

  73. Meetei AR, Sechi S, Wallisch M, Yang D, Young MK, Joenje H, Hoatlin ME, Wang W (2003) A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome. Mol Cell Biol 23:3417–3426

    Article  PubMed  CAS  Google Scholar 

  74. Melchior F, Hengst L (2002) SUMO-1 and p53. Cell Cycle 1:245–249

    PubMed  CAS  Google Scholar 

  75. Melnick A, Licht JD (1999) Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93:3167–3215

    PubMed  CAS  Google Scholar 

  76. Meluh PB, Koshland D (1995) Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol Biol Cell 6:793–807

    PubMed  CAS  Google Scholar 

  77. Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun DJ, Hasegawa PM (2005) The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci U S A 102:7760–7765

    Article  PubMed  CAS  Google Scholar 

  78. Mo YY, Yu Y, Shen Z, Beck WT (2002) Nucleolar delocalization of human topoisomerase I in response to topotecan correlates with sumoylation of the protein. J Biol Chem 277:2958–2964

    Article  PubMed  CAS  Google Scholar 

  79. Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, Spyropoulos B (2002) The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination. J Cell Sci 115:1611–1622

    PubMed  CAS  Google Scholar 

  80. Müller S, Berger M, Lehembre F, Seeler JS, Haupt Y, Dejean A (2000) c-Jun and p53 activity is modulated by SUMO-1 modification. J Biol Chem 275:13321–13329

    Article  PubMed  Google Scholar 

  81. Murtas G, Reeves PH, Fu YF, Bancroft I, Dean C, Coupland G (2003) A nuclear protease required for flowering-time regulation in Arabidopsis reduces the abundance of small ubiquitin-related modifier conjugates. Plant Cell 15:2308–2319

    Article  PubMed  CAS  Google Scholar 

  82. Owerbach D, Pina L, Gabbay KH (2004) A 212-kb region on chromosome 6q25 containing the TAB2 gene is associated with susceptibility to type 1 diabetes. Diabetes 53:1890–1893

    PubMed  CAS  Google Scholar 

  83. Ozgenc A, Loeb LA (2005) Current advances in unraveling the function of the Werner syndrome protein. Mutat Res 577:237–251

    PubMed  CAS  Google Scholar 

  84. Papouli E, Chen S, Davies AA, Huttner D, Krejci L, Sung P, Ulrich HD (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase srs2p. Mol Cell 19:123–133

    Article  PubMed  CAS  Google Scholar 

  85. Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S, Higashimoto Y, Appella E, Minucci S, Pandolfi PP, Pelicci PG (2000) PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406:207–210

    Article  PubMed  CAS  Google Scholar 

  86. Pebernard S, McDonald WH, Pavlova Y, Yates JR 3rd, Boddy MN (2004) Nse1, Nse2, and a novel subunit of the Smc5-Smc6 complex, Nse3, play a crucial role in meiosis. Mol Biol Cell 15:4866–4876

    Article  PubMed  CAS  Google Scholar 

  87. Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436:428–433

    PubMed  CAS  Google Scholar 

  88. Pichierri P, Franchitto A, Rosselli F (2004) BLM and the FANC proteins collaborate in a common pathway in response to stalled replication forks. EMBO J 23:3154–3163

    Article  PubMed  CAS  Google Scholar 

  89. Pichler A, Gast A, Seeler JS, Dejean A, Melchior F (2002) The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108:109–120

    Article  PubMed  CAS  Google Scholar 

  90. Pichler A, Melchior F (2002) Ubiquitin-related modifier SUMO1 and nucleocytoplasmic transport. Traffic 3:381–387

    Article  PubMed  CAS  Google Scholar 

  91. Reddel RR, Bryan TM (2003) Alternative lengthening of telomeres: dangerous road less travelled. Lancet 361:1840–1841

    Article  PubMed  Google Scholar 

  92. Rodriguez MS, Dargemont C, Hay RT (2001) SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 276:12654–12659

    Article  PubMed  CAS  Google Scholar 

  93. Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay RT (1999) SUMO-1 modification activates the transcriptional response of p53. EMBO J 18:6455–6461

    Article  PubMed  CAS  Google Scholar 

  94. Roth W, Sustmann C, Kieslinger M, Gilmozzi A, Irmer D, Kremmer E, Turck C, Grosschedl R (2004) PIASy-deficient mice display modest defects in IFN and Wnt signaling. J Immunol 173:6189–6199

    PubMed  CAS  Google Scholar 

  95. Santti H, Mikkonen L, Hirvonen-Santti S, Toppari J, Janne OA, Palvimo JJ (2003) Identification of a short PIASx gene promoter that directs male germ cell-specific transcription in vivo. Biochem Biophys Res Commun 308:139–147

    Article  PubMed  CAS  Google Scholar 

  96. Schmidt D, Müller S (2002) Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci USA 99:2872–2877

    Article  PubMed  CAS  Google Scholar 

  97. Schwienhorst I, Johnson ES, Dohmen RJ (2000) SUMO conjugation and deconjugation. Mol Gen Genet 263:771–786

    Article  PubMed  CAS  Google Scholar 

  98. Seeler JS, Dejean A (2001) SUMO: of branched proteins and nuclear bodies. Oncogene 20:7243–7249

    Article  PubMed  CAS  Google Scholar 

  99. Seufert W, Futcher B, Jentsch S (1995) Role of a ubiquitin-conjugating enzyme in degradation of S-and M-phase cyclins. Nature 373:78–81

    Article  PubMed  CAS  Google Scholar 

  100. Sharma M, Li X, Wang Y, Zarnegar M, Huang CY, Palvimo JJ, Lim B, Sun Z (2003) hZimp10 is an androgen receptor co-activator and forms a complex with SUMO-1 at replication foci. EMBO J 22:6101–6114

    Article  PubMed  CAS  Google Scholar 

  101. Shayeghi M, Doe CL, Tavassoli M, Watts FZ (1997) Characterisation of Schizosaccharomyces pombe rad31, a UBA-related gene required for DNA damage tolerance. Nucleic Acids Res 25:1162–1169

    Article  PubMed  CAS  Google Scholar 

  102. Shen Z, Pardington-Purtymun PE, Comeaux JC, Moyzis RK, Chen DJ (1996) UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics 36:271–279

    Article  PubMed  CAS  Google Scholar 

  103. Sherr CJ (2004) Principles of tumor suppression. Cell 116:235–246

    Article  PubMed  CAS  Google Scholar 

  104. Smogorzewska A, de Lange T (2004) Regulation of telomerase by telomeric proteins. Annu Rev Biochem 73:177–208

    Article  PubMed  CAS  Google Scholar 

  105. Soustelle C, Vernis L, Freon K, Reynaud-Angelin A, Chanet R, Fabre F, Heude M (2004) A new Saccharomyces cerevisiae strain with a mutant Smt3-deconjugating Ulp1 protein is affected in DNA replication and requires Srs2 and homologous recombination for its viability. Mol Cell Biol 24:5130–5143

    Article  PubMed  CAS  Google Scholar 

  106. Stead K, Aguilar C, Hartman T, Drexel M, Meluh P, Guacci V (2003) Pds5p regulates the maintenance of sister chromatid cohesion and is sumoylated to promote the dissolution of cohesion. J Cell Biol 163:729–741

    Article  PubMed  CAS  Google Scholar 

  107. Steinacher R, Schar P (2005) Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation. Curr Biol 15:616–623

    Article  PubMed  CAS  Google Scholar 

  108. Stelter P, Ulrich HD (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425:188–191

    Article  PubMed  CAS  Google Scholar 

  109. Strunnikov AV, Aravind L, Koonin EV (2001) Saccharomyces cerevisiae SMT4 encodes an evolutionarily conserved protease with a role in chromosome condensation regulation. Genetics 158:95–107

    PubMed  CAS  Google Scholar 

  110. Taagepera S, Rao PN, Drake FH, Gorbsky GJ (1993) DNA topoisomerase II alpha is the major chromosome protein recognized by the mitotic phosphoprotein antibody MPM-2. Proc Natl Acad Sci U S A 90:8407–8411

    Article  PubMed  CAS  Google Scholar 

  111. Tagawa H, Miura I, Suzuki R, Suzuki H, Hosokawa Y, Seto M (2002) Molecular cytogenetic analysis of the breakpoint region at 6q21-22 in T-cell lymphoma/leukemia cell lines. Genes Chromosomes Cancer 34:175–185

    Article  PubMed  CAS  Google Scholar 

  112. Takahashi Y, Toh-e A, Kikuchi Y (2001) A novel factor required for the SUMO1/Smt3 conjugation of yeast septins. Gene 275:223–231

    Article  PubMed  CAS  Google Scholar 

  113. Tanaka K, Nishide J, Okazaki K, Kato H, Niwa O, Nakagawa T, Matsuda H, Kawamukai M, Murakami Y (1999) Characterization of a fission yeast SUMO-1 homologue, pmt3p, required for multiple nuclear events, including the control of telomere length and chromosome segregation. Mol Cell Biol 19:8660–8672

    PubMed  CAS  Google Scholar 

  114. Taylor DL, Ho JC, Oliver A, Watts FZ (2002) Cell-cycle-dependent localisation of Ulp1, a Schizosaccharomyces pombe Pmt3 (SUMO)-specific protease. J Cell Sci 115:1113–1122

    PubMed  CAS  Google Scholar 

  115. Torres-Rosell J, Machin F, Farmer S, Jarmuz A, Eydmann T, Dalgaard JZ, Aragon L (2005) SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions. Nat Cell Biol 7:412–419

    Article  PubMed  CAS  Google Scholar 

  116. Ulrich HD (2004) How to activate a damage-tolerant polymerase: consequences of PCNA modifications by ubiquitin and SUMO. Cell Cycle 3:15–18

    PubMed  CAS  Google Scholar 

  117. Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F (2003) The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423:309–312

    Article  PubMed  CAS  Google Scholar 

  118. Veltman IM, Vreede LA, Cheng J, Looijenga LH, Janssen B, Schoenmakers EF, Yeh ET, van Kessel AG (2005) Fusion of the SUMO/Sentrin-specific protease 1 gene SENP1 and the embryonic polarity-related mesoderm development gene MESDC2 in a patient with an infantile teratoma and a constitutional t(12;15)(q13;q25). Hum Mol Genet 14:1955–1963

    Article  PubMed  CAS  Google Scholar 

  119. Verger A, Perdomo J, Crossley M (2003) Modification with SUMO. EMBO Rep 4:137–142

    Article  PubMed  CAS  Google Scholar 

  120. Vousden KH (2002) Activation of the p53 tumor suppressor protein. Biochim Biophys Acta 1602:47–59

    PubMed  CAS  Google Scholar 

  121. Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3:430–440

    Article  PubMed  CAS  Google Scholar 

  122. Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J (2000) BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 14:927–939

    PubMed  CAS  Google Scholar 

  123. Watanabe K, Tateishi S, Kawasuji M, Tsurimoto T, Inoue H, Yamaizumi M (2004) Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J 23:3886–3896

    Article  PubMed  CAS  Google Scholar 

  124. Wong KA, Kim R, Christofk H, Gao J, Lawson G, Wu H (2004) Protein inhibitor of activated STAT Y (PIASy) and a splice variant lacking exon 6 enhance sumoylation but are not essential for embryogenesis and adult life. Mol Cell Biol 24:5577–5586

    Article  PubMed  CAS  Google Scholar 

  125. Woods YL, Xirodimas DP, Prescott AR, Sparks A, Lane DP, Saville MK (2004) p14 Arf promotes small ubiquitin-like modifier conjugation of Werners helicase. J Biol Chem 279:50157–50166

    Article  PubMed  CAS  Google Scholar 

  126. Xhemalce B, Seeler JS, Thon G, Dejean A, Arcangioli B (2004) Role of the fission yeast SUMO E3 ligase Pli1p in centromere and telomere maintenance. EMBO J 23:3844–3853

    Article  PubMed  CAS  Google Scholar 

  127. Yamaguchi T, Sharma P, Athanasiou M, Kumar A, Yamada S, Kuehn MR (2005) Mutation of SENP1/SuPr-2 reveals an essential role for desumoylation in mouse development. Mol Cell Biol 25:5171–5182

    Article  PubMed  CAS  Google Scholar 

  128. Zhao X, Blobel G (2005) A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci USA 102:4777–4782

    Article  PubMed  CAS  Google Scholar 

  129. Zhong S, Hu P, Ye TZ, Stan R, Ellis NA, Pandolfi PP (1999) A role for PML and the nuclear body in genomic stability. Oncogene 18:7941–7947

    Article  PubMed  CAS  Google Scholar 

  130. Zhu J, Zhou J, Peres L, Riaucoux F, Honore N, Kogan S, de The H (2005) A sumoylation site in PML/RARA is essential for leukemic transformation. Cancer Cell 7:143–153

    Article  PubMed  CAS  Google Scholar 

  131. Bischof O, Schwamborn K, Martin N, Werner A, Sustmann C, Grosschedl R, Dejean A (2006) The E3 SUMO ligase PIASy is a regulator of cellular senescence and apoptosis. Mol Cell 22:783–794

    Article  PubMed  CAS  Google Scholar 

  132. Nacerddine K, Lehembre F, Bhaumik M, Artus J, Cohen-Tannoudji M, Babinet C, Pandolfi PP, Dejean A (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 9:769–779

    Article  PubMed  CAS  Google Scholar 

  133. Alkuraya FS, Saadi I, Lund JJ, Turbe-Doan A, Morton CC, Maas RL (2006) SUMO1 haploinsufficiency leads to cleft lip and palate. Science 313:1751

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seeler, J.S., Bischof, O., Nacerddine, K., Dejean, A. (2007). SUMO, the Three Rs and Cancer. In: Pandolfi, P.P., Vogt, P.K. (eds) Acute Promyelocytic Leukemia. Current Topics in Microbiology and Immunology, vol 313. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34594-7_4

Download citation

Publish with us

Policies and ethics