Abstract
In insect physiology, the mechanisms involved in the buildup and regulation of yolk proteins in developing oocytes have been thoroughly researched during the last three decades. Comparatively, the study of lipid metabolism in oocytes had received less attention. The importance of this issue lies in the fact that lipids make up to 40% of the dry weight of an insect egg, being the most important supply of energy for the developing embryo. Since the oocyte has a very limited capacity to synthesize lipids de novo, most of the lipids in the mature eggs arise from the circulation. The main lipid carriers in the insect circulatory system are the lipoproteins lipophorin and vitellogenin. In some species, the endocytosis of lipophorin and vitellogenin may account for about 10% of the lipids present in mature eggs. Thus, most of the lipids are transferred by a lipophorin-mediated pathway, in which the lipoprotein unloads its lipid cargo at the surface of oocytes without internalization. This chapter recapitulates the current status on lipid storage and its utilization in insect oocytes and discusses the participation of key factors including lipoproteins, transfer proteins, lipolytic enzymes, and dynamic organelles such as lipid droplets. The new findings in the field of lipophorin receptors are presented in the context of lipid accumulation during egg maturation, and the roles of lipids beyond energy source are summarized from the perspective of oogenesis and embryogenesis. Finally, prospective and fruitful areas of future research are suggested.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- α-ATPase:
-
α subunit of the F1FO adenosine triphosphate synthase complex
- apoA-I:
-
apolipoprotein A-I
- apoLp-I:
-
apolipophorin I
- apoLp-II:
-
apolipophorin II
- ATPase:
-
F1FO adenosine triphosphate synthase
- β-ATPase:
-
β subunit of the F1FO adenosine triphosphate synthase complex
- bHLH-PAS:
-
basic helix-loop-helix Per/Arnt/Sim
- CaM:
-
calmodulin
- COX:
-
cyclooxygenases
- DAG:
-
diacylglycerol
- DGAT:
-
acyl-CoA:diacylglycerol O-acyltransferase
- EcR:
-
ecdysone receptor
- FAs:
-
fatty acids
- FFAs:
-
free fatty acids
- GPAT:
-
glycerol-3-phosphate acyltransferase
- HCs:
-
hydrocarbons
- HDL:
-
high-density lipoproteins
- HDLp:
-
high-density lipophorin
- IDL:
-
intermediate-density lipoproteins
- IP2 :
-
phosphatidylinositol 4,5-biphosphate
- IP3 :
-
inositol 1,4,5-trisphosphate
- JH:
-
juvenile hormones
- LA:
-
LDLR class A ligand-binding domain
- LDL:
-
low-density lipoproteins
- LDLp:
-
low-density lipophorin
- LDLR:
-
low-density lipoprotein receptor
- LOX:
-
lipoxygenases
- LPL:
-
lipoprotein lipase
- LpR:
-
lipophorin receptor
- LSD-1:
-
lipid storage droplet 1
- LSD-2:
-
lipid storage droplet 2
- LTP:
-
lipid transfer particle
- MAG:
-
monoacylglycerol
- Met:
-
Methoprene-tolerant
- mVg:
-
microvitellogenin
- PGs:
-
prostaglandins
- PLC:
-
phospholipase C
- PLs:
-
phospholipids
- SCRB15:
-
scavenger receptor class B member 15
- SREBP:
-
sterol regulatory element-binding protein
- TAG:
-
triacylglycerol
- TOR:
-
target of rapamycin
- USP:
-
ultraspiracle
- VgR:
-
vitellogenin receptor
- VHDLp:
-
very high-density lipophorin
- VLDL:
-
very low-density lipoproteins
- YPPs:
-
yolk protein precursors
- YPs:
-
yolk polypeptides
References
Aguirre SA, Fruttero LL, Leyria J, Defferrari MS, Pinto PM, Settembrini BP, Rubiolo ER, Carlini CR, Canavoso LE (2011) Biochemical changes in the transition from vitellogenesis to follicular atresia in the hematophagous Dipetalogaster maxima (Hemiptera: Reduviidae). Insect Biochem Mol Biol 41:832–841
Aguirre SA, Pons P, Settembrini BP, Arroyo D, Canavoso LE (2013) Cell death mechanisms during follicular atresia in Dipetalogaster maxima, a vector of Chagas’ disease (Hemiptera: Reduviidae). J Insect Physiol 59:532–541
Alves-Bezerra M, Gondim KC (2012) Triacylglycerol biosynthesis occurs via the glycerol-3-phosphate pathway in the insect Rhodnius prolixus. Biochim Biophys Acta 1821:1462–1471
Alves-Bezerra M, De Paula IF, Medina JM, Silva-Oliveira G, Medeiros JS, Gäde G, Gondim KC (2016) Adipokinetic hormone receptor gene identification and its role in triacylglycerol metabolism in the blood-sucking insect Rhodnius prolixus. Insect Biochem Mol Biol 69:51–60
Andries K, Verhasselt P, Guillemont J, Göhlmann HW, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223–227
Angel-Dapa MA, Rodríguez-Jaramillo C, Cáceres-Martínez CJ, Saucedo PE (2010) Changes in lipid content of oocytes of the penshell Atrina mauraas a criterion of gamete development and quality: a study of histochemistry and digital image analysis. J Shellfish Res 29:407–413
Arechaga I, Jones PC (2001) Quick guide: ATP synthase. Curr Biol 11:R117
Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225
Arrese EL, Saudale FZ, Soulages JL (2014) Lipid droplets as signaling platforms linking metabolic and cellular functions. Lipid Insights 7:7–16
Atella GC, Shahabuddin M (2002) Differential partitioning of maternal fatty acid and phospholipid in neonate mosquito larvae. J Exp Biol 205:3623–3630
Atella GC, Gondim KC, Machado EA, Medeiros MN, Silva-Neto MA, Masuda H (2005) Oogenesis and egg development in triatomines: a biochemical approach. An Acad Bras Cienc 77:405–430
Baker KD, Thummel CS (2007) Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell Metab 6:257–266
Barneda D, Christian M (2017) Lipid droplet growth: regulation of a dynamic organelle. Curr Opin Cell Biol 47:9–15
Beenakkers AMT, Van der Horst DJ, Van Marrewijk WJA (1981) Role of lipids in energy metabolism. In: Downer RGH (ed) Energy metabolism in insects. Plenum, New York, pp 53–100
Bellés X (2005) Vitellogenesis directed by juvenile hormone. In: Raikhel AS (ed) Progress in vitellogenesis. Reproductive biology of invertebrates, vol 12, part B. Science Publishers, Enfield, pp 157–197
Bellés X, Piulachs MD (2015) Ecdysone signalling and ovarian development in insects: from stem cells to ovarian follicle formation. Biochim Biophys Acta 1849:181–186
Benoit JB, Yang G, Krause TB, Patrick KR, Aksoy S, Attardo GM (2011) Lipophorin acts as a shuttle of lipids to the milk gland during tsetse fly pregnancy. J Insect Physiol 57:1553–1561
Bi J, Xiang Y, Chen H, Liu Z, Grönke S, Kühnlein RP, Huang X (2012) Opposite and redundant roles of the two Drosophila perilipins in lipid mobilization. J Cell Sci 125:3568–3577
Bickel PE, Tansey JT, Welte MA (2009) PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim Biophys Acta 1791:419–440
Blacklock BJ, Ryan RO (1994) Hemolymph lipid transport. Insect Biochem Mol Biol 24:855–873
Briegel H (1990) Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J Insect Physiol 36:165–172
Brooks RA, Woodruff RI (2004) Calmodulin transmitted through gap junctions stimulates endocytic incorporation of yolk precursors in insect oocytes. Dev Biol 271:339–349
Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232:34–47
Brown PT, Herbert P, Woodruff RI (2010) Vitellogenesis in Oncopeltus fasciatus: PLC/IP3, DAG/PK-C pathway triggered by CaM. J Insect Physiol 56:1300–1305
Büning J (2006) Ovariole structure supports sistergroup relationship of Neuropterida and Coleoptera. Arthropod Syst Phylogeny 64:115–126
Canavoso LE, Wells MA (2001) Role of lipid transfer particle in delivery of diacylglycerol from midgut to lipophorin in larval Manduca sexta. Insect Biochem Mol Biol 31:783–790
Canavoso LE, Jouni ZE, Karnas KJ, Pennington JE, Wells MA (2001) Fat metabolism in insects. Annu Rev Nutr 21:23–46
Canavoso LE, Yun HK, Jouni ZE, Wells MA (2004) Lipid transfer particle mediates the delivery of diacylglycerol from lipophorin to fat body in larval Manduca sexta. J Lipid Res 45:456–465
Cardoso AF, Cres RL, Moura AS, Almeida F, Bijovsky AT (2010) Culex quinquefasciatus vitellogenesis: morphological and biochemical aspects. Mem Inst Oswaldo Cruz 105:254–262
Carrasco S, Mérida I (2007) Diacylglycerol, when simplicity becomes complex. Trends Biochem Sci 32:27–36
Chen ME, Lewis DK, Keeley LL, Pietrantonio PV (2004) cDNA cloning and transcriptional regulation of the vitellogenin receptor from the imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). Insect Mol Biol 13:195–204
Cheon HM, Seo SJ, Sun J, Sappington TW, Raikhel AS (2001) Molecular characterization of the VLDL receptor homolog mediating binding of lipophorin in oocyte of the mosquito Aedes aegypti. Insect Biochem Mol Biol 31:753–760
Chi SL, Pizzo SV (2006) Cell surface F1FO ATP synthase: a new paradigm? Ann Med 38:429–438
Chino H, Downer RGH, Takahashi K (1977) The role of diacylglycerol-carrying lipoprotein I in lipid transport during insect vitellogenesis. Biochim Biophys Acta 487:508–516
Chinzei Y, Chino H, Wyatt GR (1981) Purification and properties of vitellogenin and vitellin from Locusta migratoria. Insect Biochem 11:1–7
Ciudad L, Bellés X, Piulachs MD (2007) Structural and RNAi characterization of the German cockroach lipophorin receptor and the evolutionary relationships of lipoprotein receptors. BMC Mol Biol 8:53
Clifton ME, Noriega FG (2012) The fate of follicles after a blood meal is dependent on previtellogenic nutrition and juvenile hormone in Aedes aegypti. J Insect Physiol 58:1007–1019
Dantuma NP, Van Marrewijk WJA, Wynne HJ, Van der Horst DJ (1996) Interaction of an insect lipoprotein with its binding site at the fat body. J Lipid Res 37:1345–1355
Dantuma NP, Pijnenburg MA, Diederen JH, Van der Horst DJ (1997) Developmental down-regulation of receptor-mediated endocytosis of an insect lipoprotein. J Lipid Res 38:254–265
Dantuma NP, Potters M, De Winther MPJ, Tensen CP, Kooiman FP, Bogerd J, Van der Horst DJ (1999) An insect homolog of the vertebrate very low density lipoprotein receptor mediates endocytosis of lipophorins. J Lipid Res 40:973–978
Davey K (2007) From insect ovaries to sheep red blood cells: a tale of two hormones. J Insect Physiol 53:1–10
Di Bartolomeo S, Nazio F, Cecconi F (2010) The role of autophagy during development in higher eukaryotes. Traffic 11:1280–1289
Downer RGH, Chino H (1985) Turnover of protein and diacylglycerol components of lipophorin in insect haemolymph. Insect Biochem 15:627–630
Drummond-Barbosa D, Spradling AC (2001) Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev Biol 231:265–278
Ducharme NA, Bickel PE (2008) Lipid droplets in lipogenesis and lipolysis. Endocrinology 149:942–949
Engelmann F, Mala J (2000) The interactions between juvenile hormone (JH), lipophorin, vitellogenin, and JH esterases in two cockroach species. Insect Biochem Mol Biol 30:793–803
Entringer PF, Grillo LA, Pontes EG, Machado EA, Gondim KC (2013) Interaction of lipophorin with Rhodnius prolixus oocytes: biochemical properties and the importance of blood feeding. Mem Inst Oswaldo Cruz 108:836–844
Fan Y, Chase J, Sevala VL, Schal C (2002) Lipophorin-facilitated hydrocarbon uptake by oocytes in the German cockroach Blatella germanica. J Exp Biol 205:781–790
Fan Y, Zurek L, Dykstra M, Schal C (2003) Hydrocarbon synthesis by enzymatically dissociated oenocytes of the abdominal integument of the German cockroach, Blattella germanica. Naturwissenschaften 90:121–126
Fernandis AZ, Wenk MR (2007) Membrane lipids as signaling molecules. Curr Opin Lipidol 18:121–128
Ferreira CR, Saraiva SA, Catharino RR, Garcia JS, Gozzo FC, Sanvido GB, Santos LF, Lo Turco EG, Pontes JH, Basso AC, Bertolla RP, Sartori R, Guardieiro MM, Perecin F, Meirelles FV, Sangalli JR, Eberlin MN (2010) Single embryo and oocyte lipid fingerprinting by mass spectrometry. J Lipid Res 51:1218–1227
Fongsaran C, Jirakanwisal K, Kuadkitkan A, Wikan N, Wintachai P, Thepparit C, Ubol S, Phaonakrop N, Roytrakul S, Smith DR (2014) Involvement of ATP synthase β subunit in chikungunya virus entry into insect cells. Arch Virol 159:3353–3364
Foottit RG, Adler PH (2009) Introduction. In: Foottit RG, Adler HP (eds) Insect biodiversity: science and society, 1st edn. Wiley-Blackwell, Oxford, pp 1–6
Fruttero LL, Rubiolo ER, Canavoso LE (2009) Biochemical and cellular characterization of lipophorin-midgut interaction in the hematophagous Panstrongylus megistus (Hemiptera: Reduviidae). Insect Biochem Mol Biol 39:322–331
Fruttero LL, Frede S, Rubiolo ER, Canavoso LE (2011) The storage of nutritional resources during vitellogenesis of Panstrongylus megistus (Hemiptera: Reduviidae): the pathways of lipophorin in lipid delivery to developing oocytes. J Insect Physiol 57:475–486
Fruttero LL, Demartini DR, Rubiolo ER, Carlini CR, Canavoso LE (2014) β-chain of ATP synthase as a lipophorin binding protein and its role in lipid transfer in the midgut of Panstrongylus megistus (Hemiptera: Reduviidae). Insect Biochem Mol Biol 52:1–12
Fruttero LL, Leyria J, Ramos FO, Stariolo R, Settembrini BP, Canavoso LE (2017) The process of lipid storage in insect oocytes: the involvement of β-chain of ATP synthase in lipophorin-mediated lipid transfer in the chagas’ disease vector Panstrongylus megistus (Hemiptera: Reduviidae). J Insect Physiol 96:82–92
Galetto L, Bosco D, Balestrini R, Genre A, Fletcher J, Marzachì C (2011) The major antigenic membrane protein of “Candidatus Phytoplasma asteris” selectively interacts with ATP synthase and actin of leafhopper vectors. PLoS One 6:e22571
Go GW, Mani A (2012) Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J Biol Med 85:19–28
Goldstein JL, Brown MS (2009) The LDL receptor. Arterioscler Thromb Vasc Biol 29:431–438
Gondim KC, Wells MA (2000) Characterization of lipophorin binding to the midgut of larval Manduca sexta. Insect Biochem Mol Biol 30:405–413
Gopalapillai R, Kadono-Okuda K, Tsuchida K, Yamamoto K, Nohata J, Ajimura M, Mita K (2006) Lipophorin receptor of Bombyx mori: cDNA cloning, genomic structure, alternative splicing, and isolation of a new isoform. J Lipid Res 47:1005–1013
Guo JY, Dong SZ, Ye GY, Li K, Zhu JY, Fang Q, Hu C (2011) Oosorption in the endoparasitoid, Pteromalus puparum. J Insect Sci 11:90
Hagedorn HH (1985) The role of ecdysteroids in reproduction. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, Biochemistry and pharmacology, vol 8. Pergamon Press, Oxford, pp 205–261
Harizi H, Corcuff JB, Gualde N (2008) Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. Trends Mol Med 14:461–469
Havel RJ (1987) Lipid transport function of lipoproteins in blood plasma. Am J Physiol 253:E1–E5
Horne I, Haritos VS, Oakeshott JG (2009) Comparative and functional genomics of lipases in holometabolous insects. Insect Biochem Mol Biol 39:547–567
Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393
Huebner E, Anderson E (1972a) A cytological study of the ovary of Rhodnius prolixus. I. The ontogeny of the follicular epithelium. J Morphol 136:459–493
Huebner E, Anderson E (1972b) A cytological study of the ovary of Rhodnius prolixus. II. Oocyte differentiation. J Morphol 137:385–415
Ito Y, Yasuda A, Sonobe H (2008) Synthesis and phosphorylation of ecdysteroids during ovarian development in the silkworm, Bombyx mori. Zoolog Sci 25:721–727
Jindra M, Palli SR, Riddiford LM (2013) The juvenile hormone signaling pathway in insect development. Annu Rev Entomol 58:181–204
Jindra M, Bellés X, Shinoda T (2015) Molecular basis of juvenile hormone signaling. Curr Opin Insect Sci 11:39–46
Jouni ZE, Takada N, Gazard J, Maekawa H, Wells MA, Tsuchida K (2003) Transfer of cholesterol and diacylglycerol from lipophorin to Bombyx mori ovarioles in vitro: role of the lipid transfer particle. Insect Biochem Mol Biol 33:145–153
Juárez MP (1994) Hydrocarbon biosynthesis in Triatoma infestans eggs. Arch Insect Biochem Physiol 25:193–206
Kawooya JK, Law JH (1988) Role of lipophorin in lipid transport to the insect egg. J Biol Chem 263:8748–8753
Kawooya JK, Osir EO, Law JH (1988) Uptake of the major hemolymph lipoprotein and its transformation in the insect egg. J Biol Chem 263:8740–8747
Kory N, Farese RV, Walther TC (2016) Targeting fat: mechanisms of protein localization to lipid droplets. Trends Cell Biol 26:535–546
Kühnlein RP (2011) The contribution of the Drosophila model to lipid droplet research. Prog Lipid Res 50:348–356
Lagueux M, Hoffmann JA (1984) Ecdysteroids in ovaries and embryos of Locusta migratoria. In: Hoffman JA, Porchet M (eds) Biosynthesis, metabolism and mode of actions of invertebrates hormones. Springer, Berlin, pp 168–180
Law JH, Wells MA (1989) Insects as biochemical models. J Biol Chem 264:16335–16338
Leyria J, Fruttero LL, Aguirre SA, Canavoso LE (2014) Ovarian nutritional resources during the reproductive cycle of the hematophagous Dipetalogaster maxima (Hemiptera: Reduviidae): focus on lipid metabolism. Arch Insect Biochem Physiol 87:148–163
Li Z, Thiel K, Thul PJ, Beller M, Kühnlein RP, Welte MA (2012) Lipid droplets control the maternal histone supply of Drosophila embryos. Curr Biol 22:2104–2113
Lin X, Kim YA, Lee BL, Söderhäll K, Söderhäll I (2009) Identification and properties of a receptor for the invertebrate cytokine astakine, involved in hematopoiesis. Exp Cell Res 315:1171–1180
Liu Z, Huang X (2013) Lipid metabolism in Drosophila: development and disease. Acta Biochim Biophys Sin (Shanghai) 45:44–50
Liu H, Ryan RO (1991) Role of lipid transfer particle in transformation of lipophorin in insect oocytes. Biochim Biophys Acta 1085:112–118
Lone AM, Tasken K (2013) Proinflammatory and immunoregulatory roles of eicosanoids in T cells. Front Immunol 4:130
Lu K, Shu Y, Zhou J, Zhang X, Zhang X, Chen M, Yao Q, Zhou Q, Zhang W (2015) Molecular characterization and RNA interference analysis of vitellogenin receptor from Nilaparvata lugens (Stål). J Insect Physiol 73:20–29
Lu K, Chen X, Liu WT, Zhang XY, Chen MX, Zhou Q (2016) Nutritional signaling regulates vitellogenin synthesis and egg development through juvenile hormone in Nilaparvata lugens (Stål). Int J Mol Sci 17:269
Machado EA, Atella GC, Gondim KC, de Souza W, Masuda H (1996) Characterization and immunocytochemical localization of lipophorin binding sites in the oocytes of Rhodnius prolixus. Arch Insect Biochem Physiol 31:185–196
Machado E, Swevers L, Sdralia N, Medeiros MN, Mello FG, Iatrou K (2007) Prostaglandin signaling and ovarian follicle development in the silkmoth, Bombyx mori. Insect Biochem Mol Biol 37:876–885
Majerowicz D, Calderón-Fernández GM, Alves-Bezerra M, De Paula IF, Cardoso LS, Juárez MP, Atella GC, Gondim KC (2017) Lipid metabolism in Rhodnius prolixus: lessons from the genome. Gene 596:27–44
Makki R, Cinnamon E, Gould AP (2014) The development and functions of oenocytes. Annu Rev Entomol 59:405–425
McCall K (2004) Eggs over easy: cell death in the Drosophila ovary. Dev Biol 274:3–14
Medeiros MN, Oliveira DMP, Paiva-Silva GO, Silva-Neto MAC, Romero A, Bozza M, Masuda H, Machado EA (2002) The role of eicosanoids on Rhodnius heme-binding protein (RHBP) endocytosis by Rhodnius prolixus ovaries. Insect Biochem Mol Biol 32:537–545
Medeiros MN, Mendonça LH, Hunter AL, Paiva-Silva GO, Mello FG, Henze IP, Masuda H, Maya-Monteiro CM, Machado EA (2004) The role of lipoxygenase products on the endocytosis of yolk proteins in insects: participation of cAMP. Arch Insect Biochem Physiol 55:178–187
Meier T, Faraldo-Gomez J, Börsch B (2011) ATP synthase-a paradigmatic molecular machine. In: Frank J (ed) Molecular machines in biology. Cambridge University Press, Cambridge, pp 208–238
Miura K, Oda M, Makita S, Chinzei Y (2005) Characterization of the Drosophila Methoprene-tolerant gene product. FEBS J 272:1169–1178
Negishi M, Sugimoto Y, Ichikawa A (1995) Molecular mechanisms of diverse actions of prostanoid receptors. Biochim Biophys Acta 1259:109–120
Nelson DR, Hines H, Stay B (2004) Methyl-branched hydrocarbons, major components of the waxy material coating the embryos of the viviparous cockroach Diploptera punctata. Comp Biochem Physiol B Biochem Mol Biol 138:265–276
Niwa R, Niwa YS (2014) Enzymes for ecdysteroid biosynthesis: their biological functions in insects and beyond. Biosci Biotechnol Biochem 78:1283–1292
Nomura DK, Casida JE (2016) Lipases and their inhibitors in health and disease. Chem Biol Interact 259:211–222
Paingankar MS, Gokhale MD, Deobagkar DN (2010) Dengue-2-virus-interacting polypeptides involved in mosquito cell infection. Arch Virol 155:1453–1461
Parra-Peralbo E, Culi J (2011) Drosophila lipophorin receptors mediate the uptake of neutral lipids in oocytes and imaginal disc cells by an endocytosis independent mechanism. PLoS Genet 7:e1001297
Pennington JE, Wells MA (2002) Triacylglycerol-rich lipophorins are found in the dipteran infraorder Culicomorpha, not just in mosquitoes. J Insect Sci 2:15
Pistillo D, Manzi A, Tino A, PiloBoyl P, Graziani F, Malva C (1998) The Drosophila melanogaster lipase homologs: a gene family with tissue and developmental specific expression. J Mol Biol 276:877–855
Raikhel AS (2005) Vitellogenesis of disease vectors, from physiology to genes. In: Marquardt WC (ed) Biology of disease vectors. Elsevier, Academic Press, London, pp 329–346
Raikhel AS, Dhadialla TS (1992) Accumulation of yolk proteins in insect oocytes. Annu Rev Entomol 37:217–225
Raikhel AS, Brown M, Belles X (2005) Endocrine control of reproductive processes. In: Gilbert L, Gill S, Iatrou K (eds) Comprehensive molecular insect science. Elsevier Press, Oxford, pp 433–491
Remaley AT, Rifai N, Russell Warnick G (2015) Lipids, Lipoproteins, apolipoproteins and other cardiac risk factors. In: Burtis CA, Bruns DE (eds) Fundamentals of clinical chemistry and molecular diagnostics, 7th edn. Saunders, St. Louis, pp 338–411
Riddiford LM (2008) Juvenile hormone action: a 2007 perspective. J Insect Physiol 54:895–901
Riddiford LM, Cherbas A, Truman W (2000) Ecdysone receptors and their biological actions. Vitam Horm 60:1–73
Rodríguez-Vázquez M, Vaquero D, Parra-Peralbo E, Mejía-Morales JE, Culi J (2015) Drosophila lipophorin receptors recruit the lipoprotein ltp to the plasma membrane to mediate lipid uptake. PLoS Genet 11:e1005356
Roy-Zokan EM, Cunningham CB, Hebb LE, McKinney EC, Moore AJ (2015) Vitellogenin and vitellogenin receptor gene expression is associated with male and female parenting in a subsocial insect. Proc Biol Sci 282:20150787
Ryan RO, Van der Horst DJ (2000) Lipid transport biochemistry and its role in energy production. Annu Rev Entomol 45:233–260
Ryan RO, Wells MA, Law JH (1986) Lipoprotein interconversions in an insect, Manduca sexta. Evidence for a lipid transfer factor in the hemolymph. J Biol Chem 261:563–568
Santos R, Rosas-Oliveira R, Saraiva FB, Majerowicz D, Gondim KC (2011) Lipid accumulation and utilization by oocytes and eggs of Rhodnius prolixus. Arch Insect Biochem Physiol 77:1–16
Schmidt-Ott U, Lynch JA (2016) Emerging developmental genetic model systems in holometabolous insects. Curr Opin Genet Dev 39:116–128
Sevala V, Shu S, Ramaswamy SB, Schal C (1999) Lipophorin of female Blattella germanica (L.): characterization and relation to hemolymph titers of juvenile hormone and hydrocarbons. J Insect Physiol 45:431–441
Shao W, Espenshade PJ (2012) Expanding roles for SREBP in metabolism. Cell Metab 16:414–419
Shirk PD, Perera OP (1998) 5′ coding region of the follicular epithelium yolk polypeptide 2 cDNA in the moth, Plodia interpunctella, contains an extended coding region. Arch Insect Biochem Physiol 39:98–108
Sieber MH, Spradling AC (2015) Steroid signaling establishes a female metabolic state and regulates SREBP to control oocyte lipid accumulation. Curr Biol 25:993–1004
Singh R, Cuervo AM (2011) Autophagy in the cellular balance. Cell Metabolism 13:495–504
Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135
Snigirevskaya ES, Raikhel AS (2005) Receptor-mediated endocytosis of yolk proteins in insect oocytes. In: Raikhel AS (ed) Progress in vitellogenesis. Reproductive biology of invertebrates, vol 12, part B. Adiyodi AG, Adiyodi RG (eds) Science Publishers, Enfield, pp 198–227
Soulages JL, Firdaus SJ, Hartson S, Chen X, Howard AD, Arrese EL (2012) Developmental changes in the protein composition of Manduca sexta lipid droplets. Insect Biochem Mol Biol 42:305–320
Spracklen AJ, Kelpsch DJ, Chen X, Spracklen CN, Tootle TL (2014) Prostaglandins temporally regulate cytoplasmic actin bundle formation during Drosophila oogenesis. Mol Biol Cell 25:397–411
Stanley D (2006) Prostaglandins and other eicosanoids in insects: biological significance. Annu Rev Entomol 51:25–44
Stanley D, Kim Y (2011) Prostaglandins and their receptors in insect biology. Front Endocrinol (Lausanne) 2:105
Stanley DW, Nor Aliza AR, Tunaz H, Putnam SM, Park Y, Bedick JC (2002) FORUM Eicosanoids in insect biology. Neotrop Entomol 31:341–350
Stanley D, Haas E, Miller J (2012) Eicosanoids: exploiting insect immunity to improve biological control programs. Insects 3:492–510
Sun J, Hiraoka T, Dittmer NT, Cho K-H, Raikhel AS (2000) Lipophorin as a yolk protein precursor in the mosquito, Aedes aegypti. Insect Biochem Mol Biol 30:1161–1171
Suzuki M, Shinohara Y, Ohsaki Y, Fujimoto T (2011) Lipid droplets: size matters. J Electron Microsc (Tokyo) 1:S101–S116
Swevers L, Raikhel AS, Sappington TW, Shirk P, Iatrou K (2005) Vitellogenesis and post-vitellogenic maturation of the insect ovarian follicle. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, Reproduction and development, vol 1. Elsevier, Pergamon, pp 87–155
Takeuchi N, Chino H (1993) Lipid transfer particle in the hemolymph of the American cockroach: evidence for its capacity of transfer hydrocarbons between lipophorin particles. J Lipid Res 34:543–551
Telfer WH (1979) Sulfate and glucosamine labelling of the intercellular matrix in vitellogenic follicles of a moth. Wilehm Roux Arch Dev Biol 185:347–362
Telfer WH, Huebner E, Smith DS (1982) The cell biology of vitellogenic follicles in Hyalophora and Rhodnius. In: King RC, Akai H (eds) Insect ultrastructure, vol 1. Plenum, New York, pp 118–149
Thiam AR, Farese Jr RV, Walther TC (2013) The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol 14:775–786
Tootle TL, Williams D, Hubb A, Frederick R, Spradling A (2011) Drosophila eggshell production: identification of new genes and coordination by Pxt. PLoS One 6:e19943
Troy S, Anderson WA, Spielman A (1975) Lipid content of maturing ovaries of Aedes aegypti mosquitoes. Comp Biochem Physiol B 50:457–461
Tsuchida K, Sakudoh T (2015) Recent progress in molecular genetic studies on the carotenoid transport system using cocoon-color mutants of the silkworm. Arch Biochem Biophys 572:151–157
Tsuchida K, Wells MA (1990) Isolation and characterization of a lipoprotein receptor from the fat body of an insect, Manduca sexta. J Biol Chem 265:5761–5767
Tufail M, Takeda M (2008) Molecular characteristics of insect vitellogenins. J Insect Physiol 54:1447–1458
Tufail M, Takeda M (2009) Insect vitellogenin/lipophorin receptors: molecular structures, role in oogenesis, and regulatory mechanisms. J Insect Physiol 55:87–103
Tufail M, Raikhel AS, Takeda M (2005) Biosynthesis and processing of insect vitellogenins. In: Raikhel AS (ed) Progress in vitellogenesis. Reproductive biology of invertebrates, vol 12, part B. Adiyodi AG, Adiyodi RG (eds) Science Publishers, Enfield, pp 1–32
Tufail M, Nagaba Y, Elgendy AM, Takeda M (2014) Regulation of vitellogenin genes in insects. Entomol Science 17:269–282
Tulenko TN, Sumner AE (2002) The physiology of lipoproteins. J Nucl Cardiol 9:638–649
Ugur B, Chen K, Bellen HJ (2016) Drosophila tools and assays for the study of human diseases. Dis Model Mech 9:235–244
Upadhyay SK, Singh H, Dixit S, Mendu V, Verma PC (2016) Molecular characterization of vitellogenin and vitellogenin receptor of Bemisia tabaci. PLoS One 11:e0155306
Van Antwerpen R, Law JH (1992) Lipophorin lipase from the yolk of Manduca sexta eggs: identification and partial characterization. Arch Insect Biochem Physiol 20:1–12
Van Antwerpen R, Salvador K, Tolman K, Gentry C (1998) Uptake of lipids by developing oocytes of the hawkmoth, Manduca sexta. The possible role of lipoprotein lipase. Insect Biochem Mol Biol 28:399–408
Van Antwerpen R, Pham DQ-D, Ziegler R (2005) Accumulation of lipids in insect oocytes. In: Raikhel AS (ed) Progress in vitellogenesis. Reproductive biology of invertebrates, vol 12, part B. Adiyodi AG, Adiyodi RG (eds) Science Publishers, Enfield pp 265–287
Van der Horst DJ, Rodenburg KW (2010a) Lipoprotein assembly and function in an evolutionary perspective. BioMol Concepts 1:165–183
Van der Horst DJ, Rodenburg KW (2010b) Locust flight activity as a model for hormonal regulation of lipid mobilization and transport. J Insect Physiol 56:844–853
Van der Horst DJ, Roosendaal SD, Rodenburg KW (2009) Circulatory lipid transport: lipoprotein assembly and function from an evolutionary perspective. Mol Cell Biochem 326:105–119
Van Handel E (1993) Fuel metabolism of the mosquito (Culex quinquefasciatus) embryo. J Insect Physiol 39:831–833
Van Heusden MC, Law JH (1989) An insect lipid transfer particle promotes lipid loading from fat body to lipoprotein. J Biol Chem 264(29):17287–17292
Van Hoof D, Rodenburg KW, Van der Horst DJ (2005) Receptor-mediated endocytosis and intracellular trafficking of lipoproteins and transferrin in insect cells. Insect Biochem Mol Biol 35:117–128
Vantourout P, Radojkovic C, Lichtenstein L, Pons V, Champagne E, Martinez LO (2010) Ecto-F1-ATPase: a moonlighting protein complex and an unexpected apoA-I receptor. World J Gastroenterol 16:5925–5935
Walker JE (1998) ATP synthesis by rotary catalysis. Angew Chem Int Ed 37:2309–2319
Wang Y, Telfer WH (1996) Cyclic nucleotide-induced termination of vitellogenin uptake by Hyalophora cecropia follicles. Insect Biochem Mol Biol 26:85–94
Wang SF, Zhu J, Martin D, Raikhel AS (2005) Regulation of vitellogenin gene expression by ecdysteroids. In: Raikhel AS (ed) Progress in vitellogenesis. Reproductive biology of invertebrates, vol 12, part B. Adiyodi AG, Adiyodi RG (eds) Science Publishers, Enfield, pp 70–93
Welte MA (2015) As the fat flies: the dynamic lipid droplets of Drosophila embryos. Biochim Biophys Acta 1851:1156–1185
Wiemerslage LJ (1976) Lipid droplets formation during vitellogenesis in the cecropia moth. J Insect Physiol 22:41–50
Wilson TG, Fabian JA (1986) Drosophila melanogaster mutant resistant to a chemical analog of juvenile hormone. Dev Biol 118:190–201
Wyatt GR, Braun RP, Zhang J (1996) Priming effect in gene activation by juvenile hormone in locust fat body. Arch Insect Biochem Physiol 32:633–640
Ximenes AA, Oliveira GA, Bittencourt-Cunha P, Tomokyo M, Leite DB, Folly E, Golodne DM, Atella GC (2008) Purification, partial characterization and role in lipid transport to developing oocytes of a novel lipophorin from the cowpea weevil, Callosobruchus maculatus. Braz J Med Biol Res 41:18–25
Yamada R, Sonobe H (2003) Purification, kinetic characterization and molecular cloning of a novel enzyme ecdysteroid phosphate phosphatase. J Biol Chem 278:26365–26373
Yang H, Galea A, Sytnyk V, Crossley M (2012) Controlling the size of lipid droplets: lipid and protein factors. Curr Opin Cell Biol 24:509–516
Yokoyama H, Yokoyama T, Yuasa M, Fujimoto H, Sakudoh T, Honda N, Fugo H, Tsuchida K (2013) Lipid transfer particle from the silkworm, Bombyx mori, is a novel member of the apoB/large lipid transfer protein family. J Lipid Res 54:2379–2390
Zalewska M, Kochman A, Estève JP, Lopez F, Chaoui K, Susini C, Ozyhar A, Kochman M (2009) Juvenile hormone binding protein traffic. Interaction with ATP synthase and lipid transfer proteins. Biochim Biophys Acta 1788:1695–1705
Zhang W, Ma L, Xiao H, Xie B, Smagghe G, Guo Y, Liang G (2015) Molecular characterization and function analysis of the vitellogenin receptor from the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera, Noctuidae). PLoS One 11:e0155785
Ziegler R (1997) Lipid synthesis by ovaries and fat body of Aedes aegypti (Diptera: Culicidae). Eur J Entomol 94:385–391
Ziegler R, Van Antwerpen R (2006) Lipid uptake by insect oocytes. Insect Biochem Mol Biol 36:264–272
Acknowledgments
Authors thank Dr. B. P. Settembrini and Dr. E. R. Rubiolo for helpful suggestions and critical reading. Unpublished scanning electron micrographs were obtained in collaboration with Dr. B. P. Settembrini.
Funding
Work in the L.E.C. laboratory is supported by grants from SECyT-UNC, FONCyT (PICT 2013-0626), and CONICET (PIP 0159).
Authors’ Contribution
L.L.F., J.L., and L.E.C. wrote the chapter and approved the final version. The authors declare that there is no conflict of interest in regard to the contents of this chapter.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Fruttero, L.L., Leyria, J., Canavoso, L.E. (2017). Lipids in Insect Oocytes: From the Storage Pathways to Their Multiple Functions. In: Kloc, M. (eds) Oocytes. Results and Problems in Cell Differentiation, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-60855-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-60855-6_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60854-9
Online ISBN: 978-3-319-60855-6
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)