Skip to main content

Epigenetics of Huntington’s Disease

  • Chapter
  • First Online:
Neuroepigenomics in Aging and Disease

Abstract

Huntington’s disease (HD) is a genetic, fatal autosomal dominant neurodegenerative disorder typically occurring in midlife with symptoms ranging from chorea, to dementia, to personality disturbances (Philos Trans R Soc Lond Ser B Biol Sci 354:957–961, 1999). HD is inherited in a dominant fashion, and the underlying mutation in all cases is a CAG trinucleotide repeat expansion within exon 1 of the HD gene (Cell 72:971–983, 1993). The expanded CAG repeat, translated into a lengthened glutamine tract at the amino terminus of the huntingtin protein, affects its structural properties and functional activities. The effects are pleiotropic, as huntingtin is broadly expressed in different cellular compartments (i.e., cytosol, nucleus, mitochondria) as well as in all cell types of the body at all developmental stages, such that HD pathogenesis likely starts at conception and is a lifelong process (Front Neurosci 9:509, 2015). The rate-limiting mechanism(s) of neurodegeneration in HD still remains elusive: many different processes are commonly disrupted in HD cell lines and animal models, as well as in HD patient cells (Eur J Neurosci 27:2803–2820, 2008); however, epigenetic-chromatin deregulation, as determined by the analysis of DNA methylation, histone modifications, and noncoding RNAs, has now become a prevailing feature. Thus, the overarching goal of this chapter is to discuss the current status of the literature, reviewing how an aberrant epigenetic landscape can contribute to altered gene expression and neuronal dysfunction in HD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomas EA. DNA methylation in Huntington’s disease: implications for transgenerational effects. Neurosci Lett. 2016;625:34–9.

    Article  CAS  PubMed  Google Scholar 

  2. Razin A, Riggs AD. DNA methylation and gene function. Science. 1980;210(4470):604–10.

    Article  CAS  PubMed  Google Scholar 

  3. Breiling A, Lyko F. Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin. 2015;8:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986;321(6067):209–13.

    Article  CAS  PubMed  Google Scholar 

  5. Lee J, et al. Epigenetic mechanisms of neurodegeneration in Huntington’s disease. Neurotherapeutics. 2013;10(4):664–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Okano M, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247–57.

    Article  CAS  PubMed  Google Scholar 

  7. Klein CJ, et al. Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat Genet. 2011;43(6):595–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Winkelmann J, et al. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet. 2012;21(10):2205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol. 2010;11(9):607–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. He YF, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333(6047):1303–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maiti A, Drohat AC. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem. 2011;286(41):35334–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Herron DC, Shank RC. In vivo kinetics of O6-methylguanine and 7-methylguanine formation and persistence in DNA of rats treated with symmetrical dimethylhydrazine. Cancer Res. 1981;41(10):3967–72.

    CAS  PubMed  Google Scholar 

  13. Watanabe S, et al. Methylated DNA-binding domain 1 and methylpurine-DNA glycosylase link transcriptional repression and DNA repair in chromatin. Proc Natl Acad Sci U S A. 2003;100(22):12859–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Watt F, Molloy PL. Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev. 1988;2(9):1136–43.

    Article  CAS  PubMed  Google Scholar 

  15. Bird AP, Wolffe AP. Methylation-induced repression—belts, braces, and chromatin. Cell. 1999;99(5):451–4.

    Article  CAS  PubMed  Google Scholar 

  16. Gil JM, Rego AC. Mechanisms of neurodegeneration in Huntington’s disease. Eur J Neurosci. 2008;27(11):2803–20.

    Article  PubMed  Google Scholar 

  17. Ng CW, et al. Extensive changes in DNA methylation are associated with expression of mutant huntingtin. Proc Natl Acad Sci U S A. 2013;110(6):2354–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell. 1993;72(6):971–83.

    Google Scholar 

  19. Trettel F, et al. Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Hum Mol Genet. 2000;9(19):2799–809.

    Article  CAS  PubMed  Google Scholar 

  20. Kerschbamer E, Biagioli M. Huntington’s disease as neurodevelopmental disorder: altered chromatin regulation, coding, and non-coding RNA transcription. Front Neurosci. 2015;9:509.

    PubMed  Google Scholar 

  21. Jia H, et al. HDAC inhibition imparts beneficial transgenerational effects in Huntington’s disease mice via altered DNA and histone methylation. Proc Natl Acad Sci U S A. 2015;112(1):E56–64.

    Article  CAS  PubMed  Google Scholar 

  22. Pastor WA, et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature. 2011;473(7347):394–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tahiliani M, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009;324(5929):929–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang FL, et al. Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntingtons disease. Hum Mol Genet. 2013;22(18):3641–53.

    Article  CAS  PubMed  Google Scholar 

  26. Szulwach KE, et al. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci. 2011;14(12):1607–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Slow EJ, et al. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet. 2003;12(13):1555–67.

    Article  CAS  PubMed  Google Scholar 

  28. Fredholm BB, et al. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev. 2001;53(4):527–52.

    CAS  PubMed  Google Scholar 

  29. Harper PS. Huntington’s disease: a clinical, genetic and molecular model for polyglutamine repeat disorders. Philos Trans R Soc Lond Ser B Biol Sci. 1999;354(1386):957–61.

    Article  CAS  Google Scholar 

  30. Reiner A, et al. Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A. 1988;85(15):5733–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zuccato C, et al. Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington’s disease. Brain Pathol. 2008;18(2):225–38.

    Article  CAS  PubMed  Google Scholar 

  32. Chiang MC, et al. The A2A adenosine receptor rescues the urea cycle deficiency of Huntington’s disease by enhancing the activity of the ubiquitin-proteasome system. Hum Mol Genet. 2009;18(16):2929–42.

    Article  CAS  PubMed  Google Scholar 

  33. Taherzadeh-Fard E, et al. Age at onset in Huntington’s disease: replication study on the associations of ADORA2A, HAP1 and OGG1. Neurogenetics. 2010;11(4):435–9.

    Article  CAS  PubMed  Google Scholar 

  34. Tebano MT, et al. Role of adenosine A(2A) receptors in modulating synaptic functions and brain levels of BDNF: a possible key mechanism in the pathophysiology of Huntington’s disease. Sci World J. 2010;10:1768–82.

    Article  CAS  Google Scholar 

  35. Mangiarini L, et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 1996;87(3):493–506.

    Article  CAS  PubMed  Google Scholar 

  36. Villar-Menendez I, et al. Increased 5-methylcytosine and decreased 5-hydroxymethylcytosine levels are associated with reduced striatal A2AR levels in Huntington’s disease. Neruomol Med. 2013;15(2):295–309.

    Article  CAS  Google Scholar 

  37. Lee J, et al. Epigenetic regulation of cholinergic receptor M1 (CHRM1) by histone H3K9me3 impairs Ca(2+) signaling in Huntington’s disease. Acta Neuropathol. 2013;125(5):727–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thomas B, et al. A novel method for detecting 7-methyl guanine reveals aberrant methylation levels in Huntington disease. Anal Biochem. 2013;436(2):112–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hake SB, Xiao A, Allis CD. Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br J Cancer. 2004;90(4):761–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marques SC, et al. Alzheimer’s disease: the quest to understand complexity. J Alzheimers Dis. 2010;21(2):373–83.

    Article  CAS  PubMed  Google Scholar 

  41. Chouliaras L, et al. Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog Neurobiol. 2010;90(4):498–510.

    Article  CAS  PubMed  Google Scholar 

  42. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.

    Article  CAS  PubMed  Google Scholar 

  43. Sadri-Vakili G, Cha JH. Mechanisms of disease: histone modifications in Huntington’s disease. Nat Clin Pract Neurol. 2006;2(6):330–8.

    Article  CAS  PubMed  Google Scholar 

  44. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9(6):465–76.

    Article  CAS  PubMed  Google Scholar 

  45. Glajch KE, Sadri-Vakili G. Epigenetic mechanisms involved in Huntington’s disease pathogenesis. J Huntingtons Dis. 2015;4(1):1–15.

    CAS  PubMed  Google Scholar 

  46. Verdin E, Ott M. 50 Years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol. 2015;16(4):258–64.

    Article  CAS  PubMed  Google Scholar 

  47. Valor LM, et al. Genomic landscape of transcriptional and epigenetic dysregulation in early onset polyglutamine disease. J Neurosci. 2013;33(25):10471–82.

    Article  CAS  PubMed  Google Scholar 

  48. de Ruijter AJ, et al. The novel histone deacetylase inhibitor BL1521 inhibits proliferation and induces apoptosis in neuroblastoma cells. Biochem Pharmacol. 2004;68(7):1279–88.

    Article  PubMed  CAS  Google Scholar 

  49. Gallinari P, et al. HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res. 2007;17(3):195–211.

    CAS  PubMed  Google Scholar 

  50. Saha R, Pahan K. HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ. 2006;13(4):539–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cha JH. Transcriptional dysregulation in Huntington’s disease. Trends Neurosci. 2000;23(9):387–92.

    Article  CAS  PubMed  Google Scholar 

  52. Sugars KL, Rubinsztein DC. Transcriptional abnormalities in Huntington disease. Trends Genet. 2003;19(5):233–8.

    Article  CAS  PubMed  Google Scholar 

  53. Hoshino M, et al. Histone deacetylase activity is retained in primary neurons expressing mutant huntingtin protein. J Neurochem. 2003;87(1):257–67.

    Article  CAS  PubMed  Google Scholar 

  54. Zuccato C, et al. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet. 2003;35(1):76–83.

    Article  CAS  PubMed  Google Scholar 

  55. Cattaneo E, Zuccato C, Tartari M. Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci. 2005;6(12):919–30.

    Article  CAS  PubMed  Google Scholar 

  56. Ryu H, et al. Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway. Proc Natl Acad Sci. 2003;100(7):4281–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McCampbell A, et al. Histone deacetylase inhibitors reduce polyglutamine toxicity. Proc Natl Acad Sci. 2001;98(26):15179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Steffan JS, et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature. 2001;413(6857):739–43.

    Article  CAS  PubMed  Google Scholar 

  59. Simoes-Pires C, et al. HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs? Mol Neurodegener. 2013;8:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mielcarek M, et al. HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration. PLoS Biol. 2013;11(11):e1001717.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Pallos J, et al. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington’s disease. Hum Mol Genet. 2008;17(23):3767–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Benn CL, et al. Genetic knock-down of HDAC7 does not ameliorate disease pathogenesis in the R6/2 mouse model of Huntington’s disease. PLoS One. 2009;4(6):e5747.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Dhar S, et al. Loss of the major Type I arginine methyltransferase PRMT1 causes substrate scavenging by other PRMTs. Sci Rep. 2013;3:1311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Wang H, et al. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science. 2001;293(5531):853–7.

    Article  CAS  PubMed  Google Scholar 

  65. Daujat S, et al. Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr Biol. 2002;12(24):2090–7.

    Article  CAS  PubMed  Google Scholar 

  66. Pal S, et al. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol. 2004;24(21):9630–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ratovitski T, et al. PRMT5-mediated symmetric arginine dimethylation is attenuated by mutant huntingtin and is impaired in Huntington’s disease (HD). Cell Cycle. 2015;14(11):1716–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Shi Y, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119(7):941–53.

    Article  CAS  PubMed  Google Scholar 

  69. Hoffart LM, et al. Direct spectroscopic detection of a C-H-cleaving high-spin Fe(IV) complex in a prolyl-4-hydroxylase. Proc Natl Acad Sci U S A. 2006;103(40):14738–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ozer A, Bruick RK. Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one? Nat Chem Biol. 2007;3(3):144–53.

    Article  CAS  PubMed  Google Scholar 

  71. Schuettengruber B, et al. Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol. 2011;12(12):799–814.

    Article  CAS  PubMed  Google Scholar 

  72. Wang H, et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature. 2004;431(7010):873–8.

    Article  CAS  PubMed  Google Scholar 

  73. Cao R, Tsukada Y, Zhang Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell. 2005;20(6):845–54.

    Article  CAS  PubMed  Google Scholar 

  74. Gao Z, et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell. 2012;45(3):344–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tavares L, et al. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell. 2012;148(4):664–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Morey L, et al. RYBP and Cbx7 define specific biological functions of polycomb complexes in mouse embryonic stem cells. Cell Rep. 2013;3(1):60–9.

    Article  CAS  PubMed  Google Scholar 

  77. Aranda S, Mas G, Di Croce L. Regulation of gene transcription by Polycomb proteins. Sci Adv. 2015;1(11):e1500737.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Smits AH, et al. Stoichiometry of chromatin-associated protein complexes revealed by label-free quantitative mass spectrometry-based proteomics. Nucleic Acids Res. 2013;41(1):e28.

    Article  CAS  PubMed  Google Scholar 

  79. Margueron R, et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell. 2008;32(4):503–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bernstein BE, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125(2):315–26.

    Article  CAS  PubMed  Google Scholar 

  81. Mikkelsen TS, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007;448(7153):553–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Voigt P, et al. Asymmetrically modified nucleosomes. Cell. 2012;151(1):181–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Seong IS, et al. Huntingtin facilitates polycomb repressive complex 2. Hum Mol Genet. 2010;19(4):573–83.

    Article  CAS  PubMed  Google Scholar 

  84. Vashishtha M, et al. Targeting H3K4 trimethylation in Huntington disease. Proc Natl Acad Sci U S A. 2013;110(32):E3027–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Biagioli M, et al. Htt CAG repeat expansion confers pleiotropic gains of mutant huntingtin function in chromatin regulation. Hum Mol Genet. 2015;24(9):2442–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dong X, et al. The role of H3K4me3 in transcriptional regulation is altered in Huntington’s disease. PLoS One. 2015;10(12):e0144398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Hoss AG, et al. MicroRNAs located in the Hox gene clusters are implicated in Huntington’s disease pathogenesis. PLoS Genet. 2014;10(2):e1004188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Labadorf A, et al. RNA sequence analysis of human huntington disease brain reveals an extensive increase in inflammatory and developmental gene expression. PLoS One. 2015;10(12):e0143563.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. von Schimmelmann M, et al. Polycomb repressive complex 2 (PRC2) silences genes responsible for neurodegeneration. Nat Neurosci. 2016;19(10):1321–30.

    Article  CAS  Google Scholar 

  90. Pasini D, et al. Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2. Genes Dev. 2008;22(10):1345–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zuccato C, et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science. 2001;293(5529):493–8.

    Article  CAS  PubMed  Google Scholar 

  92. Zuccato C, Cattaneo E. Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol. 2007;81(5–6):294–330.

    Article  CAS  PubMed  Google Scholar 

  93. Bai G, et al. Epigenetic dysregulation of hairy and enhancer of split 4 (HES4) is associated with striatal degeneration in postmortem Huntington brains. Hum Mol Genet. 2015;24(5):1441–56.

    Article  PubMed  CAS  Google Scholar 

  94. Ryu H, et al. ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington’s disease. Proc Natl Acad Sci U S A. 2006;103(50):19176–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bannister AJ, Kouzarides T. The CBP co-activator is a histone acetyltransferase. Nature. 1996;384(6610):641–3.

    Article  CAS  PubMed  Google Scholar 

  96. Faber PW, et al. Huntingtin interacts with a family of WW domain proteins. Hum Mol Genet. 1998;7(9):1463–74.

    Article  CAS  PubMed  Google Scholar 

  97. Passani LA, et al. Huntingtin’s WW domain partners in Huntington’s disease post mortem brain fulfill genetic criteria for direct involvement in Huntington’s disease pathogenesis. Hum Mol Genet. 2000;9(14):2175–82.

    Article  CAS  PubMed  Google Scholar 

  98. Gao YG, et al. Autoinhibitory structure of the WW domain of HYPB/SETD2 regulates its interaction with the proline-rich region of huntingtin. Structure. 2014;22(3):378–86.

    Article  CAS  PubMed  Google Scholar 

  99. Hu M, et al. Histone H3 lysine 36 methyltransferase Hypb/Setd2 is required for embryonic vascular remodeling. Proc Natl Acad Sci U S A. 2010;107(7):2956–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Luco RF, et al. Epigenetics in alternative pre-mRNA splicing. Cell. 2011;144(1):16–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Taft RJ, Pheasant M, Mattick JS. The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays. 2007;29(3):288–99.

    Article  CAS  PubMed  Google Scholar 

  102. Mercer TR, et al. Noncoding RNAs in long-term memory formation. Neuroscientist. 2008;14(5):434–45.

    Article  CAS  PubMed  Google Scholar 

  103. Ziats MN, Rennert OM. Aberrant expression of long noncoding RNAs in autistic brain. J Mol Neurosci. 2013;49(3):589–93.

    Article  CAS  PubMed  Google Scholar 

  104. Pastori C, et al. Comprehensive analysis of the transcriptional landscape of the human FMR1 gene reveals two new long noncoding RNAs differentially expressed in fragile X syndrome and fragile X-associated tremor/ataxia syndrome. Hum Genet. 2014;133(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  105. Majidinia M, et al. The roles of non-coding RNAs in Parkinson’s disease. Mol Biol Rep. 2016;43(11):1193–204.

    Article  CAS  PubMed  Google Scholar 

  106. Hu J, et al. Systematically characterizing dysfunctional long intergenic non-coding RNAs in multiple brain regions of major psychosis. Oncotarget. 2016;7(44):71087–98.

    PubMed  PubMed Central  Google Scholar 

  107. Hindorff LA, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106(23):9362–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Molasy M, et al. MicroRNAs in glaucoma and neurodegenerative diseases. J Hum Genet. 2017;62(1):105–12.

    Article  CAS  PubMed  Google Scholar 

  110. Lee ST, et al. Altered microRNA regulation in Huntington’s disease models. Exp Neurol. 2011;227(1):172–9.

    Article  CAS  PubMed  Google Scholar 

  111. Packer AN, et al. The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci. 2008;28(53):14341–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Johnson R, Buckley NJ. Gene dysregulation in Huntington’s disease: REST, microRNAs and beyond. Neruomol Med. 2009;11(3):183–99.

    Article  CAS  Google Scholar 

  113. Shenoy A, Blelloch RH. Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol. 2014;15(9):565–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Soldati C, et al. Dysregulation of REST-regulated coding and non-coding RNAs in a cellular model of Huntington’s disease. J Neurochem. 2013;124(3):418–30.

    Article  CAS  PubMed  Google Scholar 

  115. Chung DW, et al. A natural antisense transcript at the Huntington’s disease repeat locus regulates HTT expression. Hum Mol Genet. 2011;20(17):3467–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hodges A, et al. Regional and cellular gene expression changes in human Huntington’s disease brain. Hum Mol Genet. 2006;15(6):965–77.

    Article  CAS  PubMed  Google Scholar 

  117. Johnson R. Long non-coding RNAs in Huntington’s disease neurodegeneration. Neurobiol Dis. 2012;46(2):245–54.

    Article  CAS  PubMed  Google Scholar 

  118. Khalil AM, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106(28):11667–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Miyoshi N, et al. Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells. 2000;5(3):211–20.

    Article  CAS  PubMed  Google Scholar 

  120. Mondal T, et al. MEG3 long noncoding RNA regulates the TGF-beta pathway genes through formation of RNA-DNA triplex structures. Nat Commun. 2015;6:7743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sunwoo H, et al. MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res. 2009;19(3):347–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Francelle et al. The striatal long noncoding RNA Abhd11os is neuroprotective against an N-terminal fragment of mutant huntingtin in vivo. Neurobiology of Aging, 2014;36(3):1601.e7–1601.e16.

    Google Scholar 

  123. McCampbell A, et al. Histone deacetylase inhibitors reduce polyglutamine toxicity. Proc Natl Acad Sci U S A. 2001;98(26):15179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hogarth P, Lovrecic L, Krainc D. Sodium phenylbutyrate in Huntington’s disease: a dose-finding study. Mov Disord. 2007;22(13):1962–4.

    Article  PubMed  Google Scholar 

  125. Lopez-Atalaya JP, et al. Genomic targets, and histone acetylation and gene expression profiling of neural HDAC inhibition. Nucleic Acids Res. 2013;41(17):8072–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Choudhary C, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009;325(5942):834–40.

    Article  CAS  PubMed  Google Scholar 

  127. McCabe MT, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature. 2012;492(7427):108–12.

    Article  CAS  PubMed  Google Scholar 

  128. Wapenaar H, Dekker FJ. Histone acetyltransferases: challenges in targeting bi-substrate enzymes. Clin Epigenetics. 2016;8(1):1.

    Article  CAS  Google Scholar 

  129. Thiagalingam S, et al. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci. 2003;983:84–100.

    Article  CAS  PubMed  Google Scholar 

  130. Mortaz E, et al. Epigenetics and chromatin remodeling play a role in lung disease. Tanaffos. 2011;10(4):7–16.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Biagioli Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bassi, S., Tripathi, T., Monziani, A., Di Leva, F., Biagioli, M. (2017). Epigenetics of Huntington’s Disease. In: Delgado-Morales, R. (eds) Neuroepigenomics in Aging and Disease. Advances in Experimental Medicine and Biology(), vol 978. Springer, Cham. https://doi.org/10.1007/978-3-319-53889-1_15

Download citation

Publish with us

Policies and ethics