Skip to main content

Structural Biology of TRP Channels

  • Chapter
  • First Online:
Mammalian Transient Receptor Potential (TRP) Cation Channels

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 223))

Abstract

Membrane proteins remain challenging targets for structural biologists, despite recent technical developments regarding sample preparation and structure determination. We review recent progress towards a structural understanding of TRP channels and the techniques used to that end. We discuss available low-resolution structures from electron microscopy (EM), X-ray crystallography, and nuclear magnetic resonance (NMR) and review the resulting insights into TRP channel function for various subfamily members. The recent high-resolution structure of TRPV1 is discussed in more detail in Chapter 11. We also consider the opportunities and challenges of using the accumulating structural information on TRPs and homologous proteins for deducing full-length structures of different TRP channel subfamilies, such as building homology models. Finally, we close by summarizing the outlook of the “holy grail” of understanding in atomic detail the diverse functions of TRP channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott A (2002) They said it couldn't be done. Nature 418:268–269

    CAS  PubMed  Google Scholar 

  • Auer-Grumbach M, Olschewski A, Papic L, Kremer H, McEntagart ME, Uhrig S, Fischer C, Frohlich E, Balint Z, Tang B et al (2010) Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nat Genet 42:160–164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bates-Withers C, Sah R, Clapham DE (2011) TRPM7, the Mg(2+) inhibited channel and kinase. Adv Exp Med Biol 704:173–183

    CAS  PubMed  Google Scholar 

  • Bill RM, Henderson PJ, Iwata S, Kunji ER, Michel H, Neutze R, Newstead S, Poolman B, Tate CG, Vogel H (2011) Overcoming barriers to membrane protein structure determination. Nat Biotechnol 29:335–340

    CAS  PubMed  Google Scholar 

  • Bycroft M, Bateman A, Clarke J, Hamill SJ, Sandford R, Thomas RL, Chothia C (1999) The structure of a PKD domain from polycystin-1: implications for polycystic kidney disease. EMBO J 18:297–305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cao E, Cordero-Morales JF, Liu B, Qin F, Julius D (2013a) TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron 77:667–679

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cao E, Liao M, Cheng Y, Julius D (2013b) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504:113–118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    CAS  PubMed  Google Scholar 

  • Chang Q, Gyftogianni E, van de Graaf SF, Hoefs S, Weidema FA, Bindels RJ, Hoenderop JG (2004) Molecular determinants in TRPV5 channel assembly. J Biol Chem 279:54304–54311

    CAS  PubMed  Google Scholar 

  • Clayton GM, Altieri S, Heginbotham L, Unger VM, Morais-Cabral JH (2008) Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated channel. Proc Natl Acad Sci U S A 105:1511–1515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cvetkov TL, Huynh KW, Cohen MR, Moiseenkova-Bell VY (2011) Molecular architecture and subunit organization of TRPA1 ion channel revealed by electron microscopy. J Biol Chem 286:38168–38176

    CAS  PubMed Central  PubMed  Google Scholar 

  • De-la-Rosa V, Rangel-Yescas GE, Ladron-de-Guevara E, Rosenbaum T, Islas LD (2013) Coarse architecture of the Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel determined by Fluorescence Resonance Energy Transfer (FRET). J Biol Chem 288:29506–29517

    CAS  PubMed  Google Scholar 

  • Delmas P, Brown DA (2005) Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 6:850–862

    CAS  PubMed  Google Scholar 

  • Demeuse P, Penner R, Fleig A (2006) TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. J Gen Physiol 127:421–434

    CAS  PubMed Central  PubMed  Google Scholar 

  • Desai BN, Krapivinsky G, Navarro B, Krapivinsky L, Carter BC, Febvay S, Delling M, Penumaka A, Ramsey IS, Manasian Y et al (2012) Cleavage of TRPM7 releases the kinase domain from the ion channel and regulates its participation in Fas-induced apoptosis. Dev Cell 22:1149–1162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dick IE, Tadross MR, Liang H, Tay LH, Yang W, Yue DT (2008) A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of CaV channels. Nature 451:830–834

    CAS  PubMed  Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K + conduction and selectivity. Science 280:69–77

    CAS  PubMed  Google Scholar 

  • Dumetz AC, Snellinger-O'brien AM, Kaler EW, Lenhoff AM (2007) Patterns of protein protein interactions in salt solutions and implications for protein crystallization. Protein Sci 16:1867–1877

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415:287–294

    CAS  PubMed  Google Scholar 

  • Erler I, Hirnet D, Wissenbach U, Flockerzi V, Niemeyer BA (2004) Ca2 + -selective transient receptor potential V channel architecture and function require a specific ankyrin repeat. J Biol Chem 279:34456–34463

    CAS  PubMed  Google Scholar 

  • Fujiwara Y, Minor DL Jr (2008) X-ray crystal structure of a TRPM assembly domain reveals an antiparallel four-stranded coiled-coil. J Mol Biol 383:854–870

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Elias A, Mrkonjic S, Pardo-Pastor C, Inada H, Hellmich UA, Rubio-Moscardo F, Plata C, Gaudet R, Vicente R, Valverde MA (2013) Phosphatidylinositol-4,5-biphosphate-dependent rearrangement of TRPV4 cytosolic tails enables channel activation by physiological stimuli. Proc Natl Acad Sci U S A 110:9553–9558

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaudet R (2008a) A primer on ankyrin repeat function in TRP channels and beyond. Mol Biosyst 4:372–379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaudet R (2008b) TRP channels entering the structural era. J Physiol 586:3565–3575

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaudet R (2009) Divide and conquer: high resolution structural information on TRP channel fragments. J Gen Physiol 133:231–237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grigoryan G, Keating AE (2008) Structural specificity in coiled-coil interactions. Curr Opin Struct Biol 18:477–483

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gront D, Grabowski M, Zimmerman MD, Raynor J, Tkaczuk KL, Minor W (2012) Assessing the accuracy of template-based structure prediction metaservers by comparison with structural genomics structures. J Struct Funct Genomics 13:213–225

    CAS  PubMed  Google Scholar 

  • Hellmich UA, Gaudet R (2014) High-resolution views of TRPV1 and their implications for the TRP channel superfamily. In: Nilius B, Flockerzi V (eds) Mammalian Transient Receptor Potential (TRP) cation channels. Springer, Heidelberg

    Google Scholar 

  • Hong M, Zhang Y, Hu F (2012) Membrane protein structure and dynamics from NMR spectroscopy. Annu Rev Phys Chem 63:1–24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Howard RJ, Clark KA, Holton JM, Minor DL Jr (2007) Structural insight into KCNQ (Kv7) channel assembly and channelopathy. Neuron 53:663–675

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huynh KW, Cohen MR, Chakrapani S, Holdaway HA, Stewart PL, Moiseenkova-Bell VY (2013) Structural Insight into the Assembly of TRPV Channels. Structure 22(2):260–268

    PubMed  Google Scholar 

  • Ihara M, Hamamoto S, Miyanoiri Y, Takeda M, Kainosho M, Yabe I, Uozumi N, Yamashita A (2013) Molecular bases of multimodal regulation of a fungal transient receptor potential (TRP) channel. J Biol Chem 288:15303–15317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inada H, Procko E, Sotomayor M, Gaudet R (2012) Structural and biochemical consequences of disease-causing mutations in the ankyrin repeat domain of the human TRPV4 channel. Biochemistry 51:6195–6206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishimaru Y, Katano Y, Yamamoto K, Akiba M, Misaka T, Roberts RW, Asakura T, Matsunami H, Abe K (2010) Interaction between PKD1L3 and PKD2L1 through their transmembrane domains is required for localization of PKD2L1 at taste pores in taste cells of circumvallate and foliate papillae. FASEB J 24:4058–4067

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobs MD, Harrison SC (1998) Structure of an IkappaBalpha/NF-kappaB complex. Cell 95:749–758

    CAS  PubMed  Google Scholar 

  • Jara-Oseguera A, Llorente I, Rosenbaum T, Islas LD (2008) Properties of the inner pore region of TRPV1 channels revealed by block with quaternary ammoniums. J Gen Physiol 132:547–562

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jin X, Touhey J, Gaudet R (2006) Structure of the N-terminal ankyrin repeat domain of the TRPV2 ion channel. J Biol Chem 281:25006–25010

    CAS  PubMed  Google Scholar 

  • Kobertz WR, Williams C, Miller C (2000) Hanging gondola structure of the T1 domain in a voltage-gated K(+) channel. Biochemistry 39:10347–10352

    CAS  PubMed  Google Scholar 

  • Kol S, Braun C, Thiel G, Doyle DA, Sundstrom M, Gourdon P, Nissen P (2013) Heterologous expression and purification of an active human TRPV3 ion channel. FEBS J 280(23):6010–6021

    CAS  PubMed  Google Scholar 

  • Kon T, Imamula K, Roberts AJ, Ohkura R, Knight PJ, Gibbons IR, Burgess SA, Sutoh K (2009) Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nat Struct Mol Biol 16:325–333

    CAS  PubMed Central  PubMed  Google Scholar 

  • Landoure G, Zdebik AA, Martinez TL, Burnett BG, Stanescu HC, Inada H, Shi Y, Taye AA, Kong L, Munns CH et al (2010) Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet 42:170–174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Landoure G, Sullivan JM, Johnson JO, Munns CH, Shi Y, Diallo O, Gibbs JR, Gaudet R, Ludlow CL, Fischbeck KH et al (2012) Exome sequencing identifies a novel TRPV4 mutation in a CMT2C family. Neurology 79:192–194

    PubMed Central  PubMed  Google Scholar 

  • Lange A, Giller K, Hornig S, Martin-Eauclaire MF, Pongs O, Becker S, Baldus M (2006) Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440:959–962

    CAS  PubMed  Google Scholar 

  • LaPlante JM, Falardeau JL, Brown EM, Slaugenhaupt SA, Vassilev PM (2011) The cation channel mucolipin-1 is a bifunctional protein that facilitates membrane remodeling via its serine lipase domain. Exp Cell Res 317:691–705

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lau SY, Procko E, Gaudet R (2012) Distinct properties of Ca2 + -calmodulin binding to N- and C-terminal regulatory regions of the TRPV1 channel. J Gen Physiol 140:541–555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lepage PK, Lussier MP, McDuff FO, Lavigne P, Boulay G (2009) The self-association of two N-terminal interaction domains plays an important role in the tetramerization of TRPC4. Cell Calcium 45:251–259

    CAS  PubMed  Google Scholar 

  • Lewit-Bentley A, Rety S (2000) EF-hand calcium-binding proteins. Curr Opin Struct Biol 10:637–643

    CAS  PubMed  Google Scholar 

  • Li A, Tian X, Sung SW, Somlo S (2003) Identification of two novel polycystic kidney disease-1-like genes in human and mouse genomes. Genomics 81:596–608

    CAS  PubMed  Google Scholar 

  • Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, Agard DA, Cheng Y (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10:584–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lishko PV, Procko E, Jin X, Phelps CB, Gaudet R (2007) The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54:905–918

    CAS  PubMed  Google Scholar 

  • Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K + channel. Science 309:897–903

    CAS  PubMed  Google Scholar 

  • Luft JR, Snell EH, Detitta GT (2011) Lessons from high-throughput protein crystallization screening: 10 years of practical experience. Expert Opin Drug Discov 6:465–480

    CAS  PubMed  Google Scholar 

  • Lux SE, John KM, Bennett V (1990) Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature 344:36–42

    CAS  PubMed  Google Scholar 

  • Mariani V, Kiefer F, Schmidt T, Haas J, Schwede T (2011) Assessment of template based protein structure predictions in CASP9. Proteins 79(Suppl 10):37–58

    CAS  PubMed  Google Scholar 

  • Maruyama Y, Ogura T, Mio K, Kiyonaka S, Kato K, Mori Y, Sato C (2007) Three-dimensional reconstruction using transmission electron microscopy reveals a swollen, bell-shaped structure of transient receptor potential melastatin type 2 cation channel. J Biol Chem 282:36961–36970

    CAS  PubMed  Google Scholar 

  • McCleverty CJ, Koesema E, Patapoutian A, Lesley SA, Kreusch A (2006) Crystal structure of the human TRPV2 channel ankyrin repeat domain. Protein Sci 15:2201–2206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minor DL Jr (2007) The neurobiologist's guide to structural biology: a primer on why macromolecular structure matters and how to evaluate structural data. Neuron 54:511–533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mio K, Ogura T, Kiyonaka S, Hiroaki Y, Tanimura Y, Fujiyoshi Y, Mori Y, Sato C (2007a) The TRPC3 channel has a large internal chamber surrounded by signal sensing antennas. J Mol Biol 367:373–383

    CAS  PubMed  Google Scholar 

  • Mio K, Ogura T, Kiyonaka S, Mori Y, Sato C (2007b) Subunit dissociation of TRPC3 ion channel under high-salt condition. J Electron Microsc 56:111–117

    CAS  Google Scholar 

  • Moiseenkova-Bell VY, Wensel TG (2009) Hot on the trail of TRP channel structure. J Gen Physiol 133:239–244

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moiseenkova-Bell VY, Stanciu LA, Serysheva II, Tobe BJ, Wensel TG (2008) Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc Natl Acad Sci U S A 105:7451–7455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Molland KL, Paul LN, Yernool DA (2012) Crystal structure and characterization of coiled-coil domain of the transient receptor potential channel PKD2L1. Biochim Biophys Acta 1824:413–421

    CAS  PubMed  Google Scholar 

  • Moutevelis E, Woolfson DN (2009) A periodic table of coiled-coil protein structures. J Mol Biol 385:726–732

    CAS  PubMed  Google Scholar 

  • Nieto-Posadas A, Picazo-Juarez G, Llorente I, Jara-Oseguera A, Morales-Lazaro S, Escalante-Alcalde D, Islas LD, Rosenbaum T (2012) Lysophosphatidic acid directly activates TRPV1 through a C-terminal binding site. Nat Chem Biol 8:78–85

    CAS  Google Scholar 

  • Nilius B, Voets T (2013) The puzzle of TRPV4 channelopathies. EMBO Rep 14:152–163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nilius B, Owsianik G, Voets T (2008) Transient receptor potential channels meet phosphoinositides. EMBO J 27:2809–2816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Numazaki M, Tominaga T, Takeuchi K, Murayama N, Toyooka H, Tominaga M (2003) Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci U S A 100:8002–8006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H, Maier K, De Angelis AA, Marassi FM et al (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491:779–783

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pedretti A, Marconi C, Bettinelli I, Vistoli G (2009) Comparative modeling of the quaternary structure for the human TRPM8 channel and analysis of its binding features. Biochim Biophys Acta 1788:973–982

    CAS  PubMed  Google Scholar 

  • Persechini A, Moncrief ND, Kretsinger RH (1989) The EF-hand family of calcium-modulated proteins. Trends Neurosci 12:462–467

    CAS  PubMed  Google Scholar 

  • Petri ET, Celic A, Kennedy SD, Ehrlich BE, Boggon TJ, Hodsdon ME (2010) Structure of the EF-hand domain of polycystin-2 suggests a mechanism for Ca2 + -dependent regulation of polycystin-2 channel activity. Proc Natl Acad Sci U S A 107:9176–9181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Phelps CB, Procko E, Lishko PV, Wang RR, Gaudet R (2007) Insights into the roles of conserved and divergent residues in the ankyrin repeats of TRPV ion channels. Channels (Austin) 1:148–151

    Google Scholar 

  • Phelps CB, Huang RJ, Lishko PV, Wang RR, Gaudet R (2008) Structural analyses of the ankyrin repeat domain of TRPV6 and related TRPV ion channels. Biochemistry 47:2476–2484

    CAS  PubMed Central  PubMed  Google Scholar 

  • Phelps CB, Wang RR, Choo SS, Gaudet R (2010) Differential regulation of TRPV1, TRPV3, and TRPV4 sensitivity through a conserved binding site on the ankyrin repeat domain. J Biol Chem 285:731–740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prescott ED, Julius D (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300:1284–1288

    CAS  PubMed  Google Scholar 

  • Qamar S, Vadivelu M, Sandford R (2007) TRP channels and kidney disease: lessons from polycystic kidney disease. Biochem Soc Trans 35:124–128

    CAS  PubMed  Google Scholar 

  • Qian F, Germino FJ, Cai Y, Zhang X, Somlo S, Germino GG (1997) PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet 16:179–183

    CAS  PubMed  Google Scholar 

  • Rhoads AR, Friedberg F (1997) Sequence motifs for calmodulin recognition. FASEB J 11:331–340

    CAS  PubMed  Google Scholar 

  • Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047

    CAS  PubMed  Google Scholar 

  • Ryazanov AG, Pavur KS, Dorovkov MV (1999) Alpha-kinases: a new class of protein kinases with a novel catalytic domain. Curr Biol 9:R43–R45

    CAS  PubMed  Google Scholar 

  • Saxena K, Dutta A, Klein-Seetharaman J, Schwalbe H (2012) Isotope labeling in insect cells. Methods Mol Biol 831:37–54

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM (2003) Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114:191–200

    CAS  PubMed  Google Scholar 

  • Schumacher MA, Rivard AF, Bachinger HP, Adelman JP (2001) Structure of the gating domain of a Ca2 + -activated K + channel complexed with Ca2+/calmodulin. Nature 410:1120–1124

    CAS  PubMed  Google Scholar 

  • Schumann F, Hoffmeister H, Bader R, Schmidt M, Witzgall R, Kalbitzer HR (2009) Ca2 + -dependent conformational changes in a C-terminal cytosolic domain of polycystin-2. J Biol Chem 284:24372–24383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sedgwick SG, Smerdon SJ (1999) The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci 24:311–316

    CAS  PubMed  Google Scholar 

  • Shi DJ, Ye S, Cao X, Zhang R, Wang K (2013) Crystal structure of the N-terminal ankyrin repeat domain of TRPV3 reveals unique conformation of finger 3 loop critical for channel function. Protein Cell 4:942–950

    CAS  PubMed  Google Scholar 

  • Shigematsu H, Sokabe T, Danev R, Tominaga M, Nagayama K (2010) A 3.5-nm structure of rat TRPV4 cation channel revealed by Zernike phase-contrast cryoelectron microscopy. J Biol Chem 285:11210–11218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siemens J, Zhou S, Piskorowski R, Nikai T, Lumpkin EA, Basbaum AI, King D, Julius D (2006) Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature 444:208–212

    CAS  PubMed  Google Scholar 

  • Tate CG (2012) A crystal clear solution for determining G-protein-coupled receptor structures. Trends Biochem Sci 37:343–352

    CAS  PubMed  Google Scholar 

  • Tsiokas L, Kim E, Arnould T, Sukhatme VP, Walz G (1997) Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc Natl Acad Sci U S A 94:6965–6970

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuruda PR, Julius D, Minor DL Jr (2006) Coiled coils direct assembly of a cold-activated TRP channel. Neuron 51:201–212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tugarinov V, Choy WY, Orekhov VY, Kay LE (2005) Solution NMR-derived global fold of a monomeric 82-kDa enzyme. Proc Natl Acad Sci U S A 102:622–627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vetter SW, Leclerc E (2003) Novel aspects of calmodulin target recognition and activation. Eur J Biochem 270:404–414

    CAS  PubMed  Google Scholar 

  • Wang S, Munro RA, Shi L, Kawamura I, Okitsu T, Wada A, Kim SY, Jung KH, Brown LS, Ladizhansky V (2013) Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat Methods 10:1007–1012

    PubMed  Google Scholar 

  • Whorton MR, MacKinnon R (2011) Crystal structure of the mammalian GIRK2 K + channel and gating regulation by G proteins, PIP2, and sodium. Cell 147:199–208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wider G (2000) Structure determination of biological macromolecules in solution using nuclear magnetic resonance spectroscopy. Biotechniques 29:1278–1282

    CAS  PubMed  Google Scholar 

  • Wiener R, Haitin Y, Shamgar L, Fernandez-Alonso MC, Martos A, Chomsky-Hecht O, Rivas G, Attali B, Hirsch JA (2008) The KCNQ1 (Kv7.1) COOH terminus, a multitiered scaffold for subunit assembly and protein interaction. J Biol Chem 283:5815–5830

    CAS  PubMed  Google Scholar 

  • Xu Q, Minor DL Jr (2009) Crystal structure of a trimeric form of the K(V)7.1 (KCNQ1) A-domain tail coiled-coil reveals structural plasticity and context dependent changes in a putative coiled-coil trimerization motif. Protein Sci 18:2100–2114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi H, Matsushita M, Nairn AC, Kuriyan J (2001) Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol Cell 7:1047–1057

    CAS  PubMed  Google Scholar 

  • Yu FH and Catterall WA (2004) The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci STKE (253):re15

    Google Scholar 

  • Yu Y, Ulbrich MH, Li MH, Buraei Z, Chen XZ, Ong AC, Tong L, Isacoff EY, Yang J (2009) Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc Natl Acad Sci U S A 106:11558–11563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu Y, Ulbrich MH, Li MH, Dobbins S, Zhang WK, Tong L, Isacoff EY, Yang J (2012) Molecular mechanism of the assembly of an acid-sensing receptor ion channel complex. Nat Commun 3:1252

    PubMed Central  PubMed  Google Scholar 

  • Zakharian E, Cao C, Rohacs T (2010) Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers. J Clin Neurosci 30:12526–12534

    CAS  Google Scholar 

  • Zhao X (2012) Protein structure determination by solid-state NMR. Top Curr Chem 326:187–213

    CAS  PubMed  Google Scholar 

  • Zhou ZH (2011) Atomic resolution cryo electron microscopy of macromolecular complexes. Adv Protein Chem Struct Biol 82:1–35

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu MX (2005) Multiple roles of calmodulin and other Ca(2+)-binding proteins in the functional regulation of TRP channels. Pflugers Arch 451:105–115

    CAS  PubMed  Google Scholar 

  • Zhu J, Yu Y, Ulbrich MH, Li MH, Isacoff EY, Honig B, Yang J (2011) Structural model of the TRPP2/PKD1 C-terminal coiled-coil complex produced by a combined computational and experimental approach. Proc Natl Acad Sci U S A 108:10133–10138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zimon M, Baets J, Auer-Grumbach M, Berciano J, Garcia A, Lopez-Laso E, Merlini L, Hilton-Jones D, McEntagart M, Crosby AH et al (2010) Dominant mutations in the cation channel gene transient receptor potential vanilloid 4 cause an unusual spectrum of neuropathies. Brain 133:1798–1809

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank members of the Gaudet lab, especially Christina Zimanyi, Sriram Srikant, and Jeffrey MacArthur for feedback and discussions on the manuscript. This work was supported by the National Institutes of Health (Grant R01 GM081340 to R.G.), and U.A.H. is the recipient of an EMBO Long-Term Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ute A. Hellmich or Rachelle Gaudet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hellmich, U.A., Gaudet, R. (2014). Structural Biology of TRP Channels. In: Nilius, B., Flockerzi, V. (eds) Mammalian Transient Receptor Potential (TRP) Cation Channels. Handbook of Experimental Pharmacology, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-05161-1_10

Download citation

Publish with us

Policies and ethics