Abstract
Identifying antigen–antibody interactions have been shown as a critical step in understanding the proteins biological functions and their involvement in various pathological conditions. While many techniques have been developed to characterize antigen–antibody interactions, one strategy that has gained considerable momentum over the last decade for the identification and quantification of antigen–antibody interactions, is immune affinity-chromatography followed by mass spectrometry. Moreover, the combination of enzymatic digestion of antigens and mass spectrometric identification of specific binding peptide(s) to the corresponding anti-antigen antibody has become a versatile and clinical relevant method for mapping epitopes by mass spectrometry. In this chapter, the development and applications of novel immunoaffinity mass spectrometric methodologies for elucidating biomedical aspects will be presented. First, a simplified mass spectrometric approach that maps an epitope from a digested antigen solution without immobilizing the anti-antigen antibody on a solid support will be reported. iMALDI (from immunoaffinity and MALDI, matrix-assisted laser desorption/ionization), a technique that involves immunoaffinity capture of specific peptides and direct MALDI measurements was used for absolute quantification of serine/threonine-specific protein kinase (AKT) peptides from breast cancer and colon cancer cell lines and flash-frozen tumor lysates. The intact transition epitope mapping (ITEM) was shown as a rapid and accurate epitope mapping method by using Ion mobility mass spectrometry (IMS-MS) for analysing the antigen peptide-containing immune complex previously generated by in solution epitope extraction/excision procedures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ecker, D. M., Jones, S. D., & Levine, H. L. (2015). The therapeutic monoclonal antibody market. MAbs, 7(1), 9–14.
Bruggemann, M., Osborn, M. J., Ma, B., Buelow, R., et al. (2017). Strategies to obtain diverse and specific human monoclonal antibodies from transgenic animals. Transplantation, 101(8), 1770–1776.
Xia, Z. N., Cai, X. T., & Cao, P. (2012). Monoclonal antibody: The corner stone of modern biotherapeutics. Yao Xue Xue Bao, 47(10), 1275–1280.
Opuni, K. F. M., Al-Majdoub, M., Yefremova, Y., El-Kased, R. F., Koy, C., Glocker, M. O., et al. (2018). Mass spectrometric epitope mapping. Mass Spectrometry Reviews, 37(2), 229–241.
Kaur, H., & Salunke, D. M. (2015). Antibody promiscuity: Understanding the paradigm shift in antigen recognition. IUBMB Life, 67(7), 498–505.
Sundberg, E. J. (2009). Structural basis of antibody-antigen interactions. Methods in Molecular Biology, 524, 23–36.
Van Regenmortel, M. H. (2014). Specificity, polyspecificity, and heterospecificity of antibody-antigen recognition. Journal of Molecular Recognition, 27(11), 627–639.
Hager-Braun, C., Hochleitner, E. O., Gorny, M. K., Zolla-Pazner, S., Bienstock, R. J., & Tomer, K. B. (2010). Characterization of a discontinuous epitope of the HIV envelope protein gp120 recognized by a human monoclonal antibody using chemical modification and mass spectrometric analysis. Journal of the American Society for Mass Spectrometry, 21(10), 1687–1698.
Lim, Y., Zhong, J. H., & Zhou, X. F. (2015). Development of mature BDNF-specific sandwich ELISA. Journal of Neurochemistry, 134(1), 75–85.
Lin, A. V. (2015). Indirect ELISA. Methods in Molecular Biology, 1318, 51–59.
Carlyle, B. C., Trombetta, B. A., & Arnold, S. E. (2018). Proteomic approaches for the discovery of biofluid biomarkers of neurodegenerative dementias. Proteomes, 6(3), 32.
Aydin, S. (2015). A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides, 72, 4–15.
Swiatly, A., Plewa, S., Matysiak, J., Kokot, Z. J., et al. (2018). Mass spectrometry-based proteomics techniques and their application in ovarian cancer research. Journal of Ovarian Research, 11(1), 88.
Ulrich, M., Petre, A., Youhnovski, N., Promm, F., Schirle, M., Schumm, M., et al. (2008). Post-translational tyrosine nitration of eosinophil granule toxins mediated by eosinophil peroxidase. The Journal of Biological Chemistry, 283(42), 28629–28640.
Weiss, F., et al. (2014). Catch and measure-mass spectrometry-based immunoassays in biomarker research. Biochimica et Biophysica Acta, 1844(5), 927–932.
Anderson, N. L., Anderson, N. G., Haines, L. R., Hardie, D. B., Olafson, R. W., Pearson, T. W., et al. (2004). Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti-peptide antibodies (SISCAPA). Journal of Proteome Research, 3(2), 235–244.
Tian, X., Cecal, R., McLaurin, J., Manea, M., Stefanescu, R., Grau, S., et al. (2005). Identification and structural characterisation of carboxy-terminal polypeptides and antibody epitopes of Alzheimer’s amyloid precursor protein using high-resolution mass spectrometry. European Journal of Mass Spectrometry (Chichester, England), 11(5), 547–556.
Zhao, Y., Muir, T. W., Kent, S. B., Tischer, E., Scardina, J. M., Chait, B. T., et al. (1996). Mapping protein-protein interactions by affinity-directed mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 93(9), 4020–4024.
Moise, A., Andre, S., Eggers, F., Krzeminski, M., Przybylski, M., Gabius, H. J., et al. (2011). Toward bioinspired galectin mimetics: Identification of ligand-contacting peptides by proteolytic-excision mass spectrometry. Journal of the American Chemical Society, 133(38), 14844–14847.
Petre, B. A., Ulrich, M., Stumbaum, M., Bernevic, B., Moise, A., Doring, G., et al. (2012). When is mass spectrometry combined with affinity approaches essential? A case study of tyrosine nitration in proteins. Journal of the American Society for Mass Spectrometry, 23(11), 1831–1840.
Petre, B. A. (2008). Analytical development and biochemical application of mass spectrometry in combination with immunoaffinity methods for identification and structural characterisation of protein nitration. Dissertation. Retrieved from http://kops.ub.uni-konstanz.de/handle/urn:nbn:de:bsz:352-opus-85026
Petre, B. A. (2014). Affinity-mass spectrometry approaches for elucidating structures and interactions of protein-ligand complexes. Advances in Experimental Medicine and Biology, 806, 129–151.
Kukacka, Z., Iurascu, M., Lupu, L., Rusche, H., Murphy, M., Altamore, L., et al. (2018). Antibody epitope of human alpha-galactosidase a revealed by affinity mass spectrometry: A basis for reversing immunoreactivity in enzyme replacement therapy of Fabry disease. ChemMedChem, 13(9), 909–915.
Nelson, P. N., Reynolds, G. M., Waldron, E. E., Ward, E., Giannopoulos, K., Murray, P. G., et al. (2000). Monoclonal antibodies. Molecular Pathology, 53(3), 111–117.
Kazemi, M., & Finkelstein, R. A. (1991). Mapping epitopic regions of cholera toxin B-subunit protein. Molecular Immunology, 28(8), 865–876.
Saint-Remy, J. M. (1997). Epitope mapping: A new method for biological evaluation and immunotoxicology. Toxicology, 119(1), 77–81.
Juszczyk, P., Paraschiv, G., Szymanska, A., Kolodziejczyk, A. S., Rodziewicz-Motowidlo, S., Grzonka, Z., et al. (2009). Binding epitopes and interaction structure of the neuroprotective protease inhibitor cystatin C with beta-amyloid revealed by proteolytic excision mass spectrometry and molecular docking simulation. Journal of Medicinal Chemistry, 52(8), 2420–2428.
Hochleitner, E. O., Gorny, M. K., Zolla-Pazner, S., Tomer, K. B., et al. (2000). Mass spectrometric characterization of a discontinuous epitope of the HIV envelope protein HIV-gp120 recognized by the human monoclonal antibody 1331A. Journal of Immunology, 164(8), 4156–4161.
Tian, X., Maftei, M., Kohlmann, M., Allinquant, B., Przybylski, M., et al. (2007). Differential epitope identification of antibodies against intracellular domains of Alzheimer’s amyloid precursor protein using high resolution affinity-mass spectrometry. Sub-Cellular Biochemistry, 43, 339–354.
Parker, C. E., & Tomer, K. B. (2002). MALDI/MS-based epitope mapping of antigens bound to immobilized antibodies. Molecular Biotechnology, 20(1), 49–62.
Pimenova, T., Meier, L., Roschitzki, B., Paraschiv, G., Przybylski, M., Zenobi, R., et al. (2009). Polystyrene beads as an alternative support material for epitope identification of a prion-antibody interaction using proteolytic excision-mass spectrometry. Analytical and Bioanalytical Chemistry, 395(5), 1395–1401.
Ochs, R. L., Lischwe, M. A., Spohn, W. H., Busch, H., et al. (1985). Fibrillarin: A new protein of the nucleolus identified by autoimmune sera. Biology of the Cell, 54(2), 123–133.
Tollervey, D., Lehtonen, H., Jansen, R., Kern, H., Hurt, E. C., et al. (1993). Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell, 72(3), 443–457.
Feist, E., Egerer, K., & Burmester, G. R. (2007). Autoantibody profile in rheumatoid arthritis. Zeitschrift für Rheumatologie, 66(3), 212–214. 216–8.
El-Kased, R. F., Koy, C., Deierling, T., Lorenz, P., Qian, Z., Li, Y., et al. (2009). Mass spectrometric and peptide chip epitope mapping of rheumatoid arthritis autoantigen RA33. European Journal of Mass Spectrometry (Chichester, England), 15(6), 747–759.
El-Kased, R. F., Koy, C., Lorenz, P., Montgomery, H., Tanaka, K., Thiesen, H.-J., et al. (2011). A novel mass spectrometric epitope mapping approach without immobilization of the antibody. Journal of Proteomics & Bioinformatics, 4, 001–009.
Shah, B., Reid, J. D., Kuzyk, M. A., Parker, C. E., Borchers, C. H., et al. (2013). Developing an iMALDI method. Methods in Molecular Biology, 1023, 97–120.
Popp, R., Li, H., & Borchers, C. (2018). Immuno-MALDI (iMALDI) mass spectrometry for the analysis of proteins in signaling pathways. Expert Review of Proteomics, 15(9), 701–708.
Petre, B. A., Youhnovski, N., Lukkari, J., Weber, R., Przybylski, M., et al. (2005). Structural characterisation of tyrosine-nitrated peptides by ultraviolet and infrared matrix-assisted laser desorption/ionisation Fourier transform ion cyclotron resonance mass spectrometry. European Journal of Mass Spectrometry (Chichester, England), 11(5), 513–518.
Kuzyk, M. A., Smith, D., Yang, J., Cross, T. J., Jackson, A. M., Hardie, D. B., et al. (2009). Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Molecular & Cellular Proteomics, 8(8), 1860–1877.
Popp, R., Basik, M., Spatz, A., Batist, G., Zahedi, R. P., Borchers, C. H., et al. (2018). How iMALDI can improve clinical diagnostics. Analyst, 143(10), 2197–2203.
Jiang, J., Parker, C. E., Fuller, J. R., Kawula, T. H., Borchers, C. H., et al. (2007). Development of an immuno tandem mass spectrometry (iMALDI) assay for EGFR diagnosis. Proteomics. Clinical Applications, 1(12), 1651–1659.
Sechi, L. A., Sechi, L. A., Novello, M., Colussi, G., Di Fabio, A., Chiuch, A., et al. (2008). Relationship of plasma renin with a prothrombotic state in hypertension: Relevance for organ damage. American Journal of Hypertension, 21(12), 1347–1353.
Reid, J. D., Holmes, D. T., Mason, D. R., Shah, B., Borchers, C. H., et al. (2010). Towards the development of an immuno MALDI (iMALDI) mass spectrometry assay for the diagnosis of hypertension. Journal of the American Society for Mass Spectrometry, 21(10), 1680–1686.
Camenzind, A. G., van der Gugten, J. G., Popp, R., Holmes, D. T., Borchers, C. H., et al. (2013). Development and evaluation of an immuno-MALDI (iMALDI) assay for angiotensin I and the diagnosis of secondary hypertension. Clinical Proteomics, 10(1), 20.
Popp, R., Malmstrom, D., Chambers, A. G., Lin, D., Camenzind, A. G., van der Gugten, J. G., et al. (2015). An automated assay for the clinical measurement of plasma renin activity by immuno-MALDI (iMALDI). Biochimica et Biophysica Acta, 1854(6), 547–558.
Popp, R., Li, H., LeBlanc, A., Mohammed, Y., Aguilar-Mahecha, A., Chambers, A. G., et al. (2017). Immuno-matrix-assisted laser desorption/ionization assays for quantifying AKT1 and AKT2 in breast and colorectal cancer cell lines and tumors. Analytical Chemistry, 89(19), 10592–10600.
Liu, P., Wang, Z., & Wei, W. (2014). Phosphorylation of Akt at the C-terminal tail triggers Akt activation. Cell Cycle, 13(14), 2162–2164.
Humphreys, B. D., Cantaluppi, V., Portilla, D., Singbartl, K., Yang, L., Rosner, M. H., et al. (2016). Targeting endogenous repair pathways after AKI. Journal of the American Society of Nephrology, 27(4), 990–998.
Sarbassov, D. D., Guertin, D. A., Ali, S. M., Sabatini, D. M., et al. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 307(5712), 1098–1101.
Hyman, D. M., Smyth, L. M., Donoghue, M. T. A., Westin, S. N., Bedard, P. L., Dean, E. J., et al. (2017). AKT inhibition in solid tumors with AKT1 mutations. Journal of Clinical Oncology, 35(20), 2251–2259.
Wang, Q., Chen, X., & Hay, N. (2017). Akt as a target for cancer therapy: More is not always better (lessons from studies in mice). British Journal of Cancer, 117(2), 159–163.
Searle, E. J., Telfer, B. A., Mukherjee, D., Forster, D. M., Davies, B. R., Williams, K. J., et al. (2017). Akt inhibition improves long-term tumour control following radiotherapy by altering the microenvironment. EMBO Molecular Medicine, 9(12), 1646–1659.
Yefremova, Y., Opuni, K. F. M., Danquah, B. D., Thiesen, H. J., Glocker, M. O., et al. (2017). Intact transition epitope mapping (ITEM). Journal of the American Society for Mass Spectrometry, 28(8), 1612–1622.
Henderson, S. C., Valentine, S. J., Counterman, A. E., Clemmer, D. E., et al. (1999). ESI/ion trap/ion mobility/time-of-flight mass spectrometry for rapid and sensitive analysis of biomolecular mixtures. Analytical Chemistry, 71(2), 291–301.
Lanucara, F., Holman, S. W., Gray, C. J., Eyers, C. E., et al. (2014). The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nature Chemistry, 6(4), 281–294.
Kronvall, G. (1973). A surface component in group A, C, and G streptococci with non-immune reactivity for immunoglobulin G. Journal of Immunology, 111(5), 1401–1406.
Olsson, A., Eliasson, M., Guss, B., Nilsson, B., Hellman, U., Lindberg, M., et al. (1987). Structure and evolution of the repetitive gene encoding streptococcal protein G. European Journal of Biochemistry, 168(2), 319–324.
Yefremova, Y., Al-Majdoub, M., Opuni, K. F., Koy, C., Cui, W., Yan, Y., et al. (2015). “De-novo” amino acid sequence elucidation of protein G’e by combined “top-down” and “bottom-up” mass spectrometry. Journal of the American Society for Mass Spectrometry, 26(3), 482–492.
Neta, P., Pu, Q. L., Kilpatrick, L., Yang, X., Stein, S. E., et al. (2007). Dehydration versus deamination of N-terminal glutamine in collision-induced dissociation of protonated peptides. Journal of the American Society for Mass Spectrometry, 18(1), 27–36.
Akerstrom, B., & Bjorck, L. (1986). A physicochemical study of protein G, a molecule with unique immunoglobulin G-binding properties. The Journal of Biological Chemistry, 261(22), 10240–10247.
Sauer-Eriksson, A. E., Kleywegt, G. J., Uhlen, M., Jones, T. A., et al. (1995). Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Structure, 3(3), 265–278.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Ion, L., Petre, B.A. (2019). Immuno-Affinity Mass Spectrometry: A Novel Approaches with Biomedical Relevance. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 1140. Springer, Cham. https://doi.org/10.1007/978-3-030-15950-4_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-15950-4_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-15949-8
Online ISBN: 978-3-030-15950-4
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)