Skip to main content

Tactile and Non-tactile Sensory Paradigms for fMRI and Neurophysiologic Studies in Rodents

  • Protocol
Dynamic Brain Imaging

Part of the book series: METHODS IN MOLECULAR BIOLOGY™ ((MIMB,volume 489))

Abstract

Functional magnetic resonance imaging (fMRI) has become a popular functional imaging tool for human studies. Future diagnostic use of fMRI depends, however, on a suitable neurophysiologic interpretation of the blood oxygenation level dependent (BOLD) signal change. This particular goal is best achieved in animal models primarily due to the invasive nature of other methods used and/or pharmacological agents applied to probe different nuances of neuronal (and glial) activity coupled to the BOLD signal change. In the last decade, we have directed our efforts towards the development of stimulation protocols for a variety of modalities in rodents with fMRI. Cortical perception of the natural world relies on the formation of multi-dimensional representation of stimuli impinging on the different sensory systems, leading to the hypothesis that a sensory stimulus may have very different neurophysiologic outcome(s) when paired with a near simultaneous event in another modality. Before approaching this level of complexity, reliable measures must be obtained of the relatively small changes in the BOLD signal and other neurophysiologic markers (electrical activity, blood flow) induced by different peripheral stimuli. Here we describe different tactile (i.e., forepaw, whisker) and non-tactile (i.e., olfactory, visual) sensory paradigms applied to the anesthetized rat. The main focus is on development and validation of methods for reproducible stimulation of each sensory modality applied independently or in conjunction with one another, both inside and outside the magnet. We discuss similarities and/or differences across the sensory systems as well as advantages they may have for studying essential neuroscientific questions. We envisage that the different sensory paradigms described here may be applied directly to studies of multi-sensory interactions in anesthetized rats, en route to a rudimentary understanding of the awake functioning brain where various sensory cues presumably interrelate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Raichle ME (1988) “Circulatory and metabolic correlates of brain function in normal humans” in Handbook of physiology – The nervous system V (Springer-Verlag, New York, USA) pp. 633–674

    Google Scholar 

  2. Raichle ME (1998) Behind the scenes of functional brain imaging: A historical and physiological perspective. Proc Natl Acad Sci USA. 95:765–772

    CAS  PubMed  Google Scholar 

  3. Shulman RG, Blamire AM, Rothman DL, McCarthy G (1993) Nuclear magnetic resonance imaging and spectroscopy of human brain function. Proc Natl Acad Sci USA. 90:3127–3133

    CAS  PubMed  Google Scholar 

  4. Shulman RG, Rothman DL, Behar KL, Hyder F (2004) Energetic basis of brain activity: Implications for neuroimaging. Trends Neurosci. 27:489–495

    CAS  PubMed  Google Scholar 

  5. Ogawa S, Lee TM, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image on rodent brain at high magnetic fields. Magn Reson Med. 14:68–78

    CAS  PubMed  Google Scholar 

  6. Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. Biophys J. 64:803–812

    CAS  PubMed  Google Scholar 

  7. Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med. 25:390–397

    CAS  PubMed  Google Scholar 

  8. Blamire AM, Ogawa S, Ugurbil K, Rothman D, Mccarthy G, Ellermann JM, Hyder F, Rattner Z, Shulman RG (1992) Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. Proc Natl Acad Sci USA. 89:11069–11073

    CAS  PubMed  Google Scholar 

  9. Kwong KW, Belliveau JW, Chesler DA, Goldberg IE, Weiskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng HM, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA. 89:5675–5679

    CAS  PubMed  Google Scholar 

  10. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA. 89:5951–5955

    CAS  PubMed  Google Scholar 

  11. Posner MI, Raichle ME (1998) The neuroimaging of human brain function. Proc Natl Acad Sci USA. 95:763–764

    CAS  PubMed  Google Scholar 

  12. Logothetis NK (2002) The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci. 357:1003–1037

    PubMed  Google Scholar 

  13. Lauritzen M (2001) Relationship of spikes, synaptic activity, and local changes of cerebral blood flow. J Cereb Blood Flow Metab. 21:1367–1383

    CAS  PubMed  Google Scholar 

  14. Hyder F (2004) Neuroimaging with calibrated fMRI. Stroke. 35 Suppl 1:2635–2641

    PubMed  Google Scholar 

  15. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature. 412:150–157

    CAS  PubMed  Google Scholar 

  16. Smith AJ, Blumenfeld H, Behar KL, Rothman DL, Shulman RG, Hyder F (2002) Cerebral energetics and spiking frequency: The neurophysiological basis of fMRI. Proc Natl Acad Sci USA. 99:10765–10770

    CAS  PubMed  Google Scholar 

  17. Kim DS, Ronen I, Olman C, Kim SG, Ugurbil K, Toth LJ (2004) Spatial relationship between neuronal activity and BOLD functional MRI. NeuroImage. 21:876–885

    PubMed  Google Scholar 

  18. Arthurs OJ, Williams EJ, Carpenter TA, Pickard JD, Boniface SJ (2000) Linear coupling between functional magnetic resonance imaging and evoked potential amplitude in human somatosensory cortex. Neuroscience. 101:803–806

    CAS  PubMed  Google Scholar 

  19. Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci. 3:716–723

    CAS  PubMed  Google Scholar 

  20. Niessing J, Ebisch B, Schmidt KE, Niessing M, Singer W, Galuske RA (2005) Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science. 309:948–951

    CAS  PubMed  Google Scholar 

  21. Kida I, Smith AJ, Blumenfeld H, Behar KL, Hyder F (2006) Lamotrigine suppresses neurophysiological responses to somatosensory stimulation in the rodent. NeuroImage. 29:216–224

    PubMed  Google Scholar 

  22. Gsell W, Burke M, Wiedermann D, Bonvento G, Silva AC, Dauphin F, Buhrle C, Hoehn M, Schwindt W (2006) Differential effects of NMDA and AMPA glutamate receptors on functional magnetic resonance imaging signals and evoked neuronal activity during forepaw stimulation of the rat. J Neurosci. 26:8409–8416

    PubMed  Google Scholar 

  23. Burke M, Buhrle C (2006) BOLD response during uncoupling of neuronal activity and CBF. NeuroImage. 32:1–8

    CAS  PubMed  Google Scholar 

  24. Hyder F, Behar KL, Martin MA, Blamire AM, Shulman RG (1994) Dynamic magnetic resonance imaging of the rat brain during forepaw stimulation. J Cereb Blood Flow Metab. 14:649–655

    CAS  PubMed  Google Scholar 

  25. Yang X, Hyder F, Shulman RG (1996) Single-whisker activation observed in rat cortex by functional magnetic resonance imaging. Proc Natl Acad Sci USA. 93:475–478

    CAS  PubMed  Google Scholar 

  26. Xu F, Kida I, Hyder F, Shulman RG (2000) Assessment and discrimination of odor stimuli in rat olfactory bulb by dynamic fMRI. Proc Natl Acad Sci USA. 97:10601–10606

    CAS  PubMed  Google Scholar 

  27. Ugurbil K, Adriany G, Andersen P, Chen W, Garwood M, Gruetter R, Henry PG, Kim SG, Lieu H, Tkac I, Vaughan T, Van De Moortele PF, Yacoub E, Zhu XH (2003) Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging. 21:1263–1281

    PubMed  Google Scholar 

  28. Schafer JR, Kida I, Rothman DL, Xu F, Hyder F (2006) Reproducibility of odor maps by fMRI in rodents. NeuroImage. 31:1238–1246

    PubMed  Google Scholar 

  29. Maandag NJG, Coman D, Sanganahalli BG, Herman P, Blumenfeld H, Smith AJ, Shulman RG, Hyder F (2007) Energetics of neuronal signaling and fMRI activity. Proc Natl Acad Sci USA. 104:20546–20551

    CAS  PubMed  Google Scholar 

  30. Kida I, Maciejewski PK, Hyder F (2004) Dynamic imaging of perfusion and oxygenation by fMRI. J Cereb Blood Flow Metab. 24:1369–1281

    PubMed  Google Scholar 

  31. Kida I, Rothman DL, Hyder F (2007) Dynamics of changes in blood flow, volume, and oxygenation: Implications for dynamic fMRI calibration. J Cereb Blood Flow Metab. 27:690–696

    PubMed  Google Scholar 

  32. Shepherd GM (2004) The synaptic organization of the brain (Oxford University Press, New York)

    Google Scholar 

  33. Wallace MT, Meredith MA, Stein BE (1993) Converging influences from visual, auditory, and somatosensory cortices onto output neurons of the superior colliculus. J Neurophysiol. 69:1797–1809

    CAS  PubMed  Google Scholar 

  34. Wallace MT, Meredith MA, Stein BE (1998) Multisensory integration in the superior colliculus of the alert cat. J Neurophysiol. 80:1006–1010

    CAS  PubMed  Google Scholar 

  35. Kauer JS (1974) Response patterns of amphibian olfactory bulb neurones to odour stimulation. J Physiol. 243:695–715

    CAS  PubMed  Google Scholar 

  36. Zochowski M, Cohen LB, Fuhrmann G, Kleinfeld D (2000) Distributed and partially separate pools of neurons are correlated with two different components of the gill-withdrawal reflex in Aplysia. J Neurosci. 20:8485–8492

    CAS  PubMed  Google Scholar 

  37. Van Camp N, Verhoye M, De Zeeuw CI, Van der Linden A (2006) Light stimulus frequency dependence of activity in the rat visual system as studied with high-resolution BOLD fMRI. J Neurophysiol. 95:3164–3170

    PubMed  Google Scholar 

  38. Schulte ML, Pawela CP, Cho YR, Li R, Hudetz AG, Hyde JS (2007) Detecting responses to single light flashes in the rodent brain using laser Doppler and fMRI at 9.4T. Proc Int Soc Magn Reson Med. 1:619

    Google Scholar 

  39. Rooney BJ, Cooper RM (1988) Effects of square-wave gratings and diffuse light on metabolic activity in the rat visual system. Brain Res. 439:311–321

    CAS  PubMed  Google Scholar 

  40. Prusky GT, West PW, Douglas RM (2002) Reduced visual acuity impairs place but not cued learning in the Morris water task. Behav Brain Res. 116:135–140

    Google Scholar 

  41. Lund RD, Lund JS, Wise RP (1974) The organization of the retinal projection to the dorsal lateral geniculate nucleus in pigmented and albino rats. J Comp Neurol. 158:383–403

    CAS  PubMed  Google Scholar 

  42. Drager UC, Olsen JF (1980) Origins of crossed and uncrossed retinal projections in pigmented and albino mice. J Comp Neurol. 191:383–412

    CAS  PubMed  Google Scholar 

  43. Abel PL, Olavarria JF (1996) The callosal pattern in striate cortex is more patchy in monocularly enucleated albino than pigmented rats. Neurosci Lett. 204:169–172

    CAS  PubMed  Google Scholar 

  44. Nersesyan H, Hyder F, Rothman DL, Blumenfeld H (2004) Dynamic fMRI and EEG recordings during spike-wave seizures and generalized tonic-clonic seizures in WAG/Rij rats. J Cereb Blood Flow Metab. 24:589–599

    PubMed  Google Scholar 

  45. Gruetter R (1993) Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med. 29:804–811

    CAS  PubMed  Google Scholar 

  46. Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med. 3:823–833

    CAS  PubMed  Google Scholar 

  47. Frahm J, Haase A, Matthaei D (1986) Rapid three-dimensional MR imaging using the FLASH technique. J Comput Assist Tomogr. 10:363–368

    CAS  PubMed  Google Scholar 

  48. Mansfield P (1977) Multi-planar Image formation using NMR spin echoes. J Phys C. 10:L55–L58

    CAS  Google Scholar 

  49. Hyder F, Rothman DL, Blamire AM (1995) Image reconstruction of sequentially sampled echo-planar data. Magn Reson Imaging. 13:97–103

    CAS  PubMed  Google Scholar 

  50. Nersesyan H, Herman P, Erdogan E, Hyder F, Blumenfeld H (2004) Relative changes in cerebral blood flow and neuronal activity in local microdomains during generalized seizures. J Cereb Blood Flow Metab. 24:1057–1068

    PubMed  Google Scholar 

  51. Trubel HKF, Sacolick LI, Hyder F (2006) Regional temperature changes in the brain during somatosensory stimulation. J Cereb Blood Flow Metab. 26:68–78

    PubMed  Google Scholar 

  52. Schridde U, Khubchandani M, Motelow JE, Sanganahalli BG, Hyder F, Blumenfeld H (2008) Negative BOLD with large increases in neuronal activity. Cereb Cortex. 18:1814–1827

    PubMed  Google Scholar 

  53. Paxinos G, Watson C (1997) The Rat Brain in Stereotaxic Coordinates (Academic Press, New York, NY)

    Google Scholar 

  54. Yang X, Renken R, Hyder F, Siddeek M, Greer CA, Shepherd GM, Shulman RG (1998) Dynamic mapping at the laminar level of odor-elicited responses in rat olfactory bulb by functional MRI. Proc Natl Acad Sci USA. 95:7715–7720

    CAS  PubMed  Google Scholar 

  55. Xu F, Liu N, Kida I, Rothman DL, Hyder F, Shepherd GM (2003) Odor maps of aldehydes and esters revealed by fMRI in the glomerular layer of the mouse olfactory bulb. Proc Natl Acad Sci USA. 100:11029–11034

    CAS  PubMed  Google Scholar 

  56. Schafer JR, Kida I, Rothman DL, Hyder F, Xu F (2005) Adaptation in the rodent olfactory bulb measured with fMRI. Magn Reson Med. 54:443–448

    PubMed  Google Scholar 

  57. Beuerman RW (1975) Slow potentials of the turtle olfactory bulb in response to odor stimulation of the nose. Brain Res. 97:61–78

    CAS  PubMed  Google Scholar 

  58. Lam YW, Cohen LB, Wachowiak M, Zochowski MR (2000) Odors elicit three different oscillations in the turtle olfactory bulb. J Neurosci. 20:749–762

    CAS  PubMed  Google Scholar 

  59. Woolsey TA (1978) Some anatomical bases of cortical somatotopic organization. Brain Behav Evol. 15:325–371

    Google Scholar 

  60. Simons DJ (1983) Multi-whisker stimulation and its effects on vibrissa units in rat SmI barrel cortex. Brain Res. 276:178–182

    CAS  PubMed  Google Scholar 

  61. Welker E (2000) Developmental plasticity: to preserve the individual or to create a new species? Novartis Found Symp. 228:227–235

    CAS  PubMed  Google Scholar 

  62. Yang X, Hyder F, Shulman RG (1997) Functional MRI BOLD signal coincides with electrical activity in rat whisker barrel. Magn Reson Med. 38:874–877

    CAS  PubMed  Google Scholar 

  63. Sanganahalli BG, Herman P, Hyder F (2008) Frequency-dependent tactile responses in rat brain measured by functional MRI. NMR Biomed. 21:410–416

    PubMed  Google Scholar 

  64. Brinker G, Bock C, Busch E, Krep H, Hossmann KA, Hoehn-Berlage M (1999) Simultaneous recording of evoked potentials and T2*-weighted MR images during somatosensory stimulation of rat. Magn Reson Med. 41:469–473

    CAS  PubMed  Google Scholar 

  65. Van Camp N, Verhoye M, Van der Linden A (2006) Stimulation of the rat somatosensory cortex at different frequencies and pulse widths. NMR Biomed. 19:10–17

    PubMed  Google Scholar 

  66. Shepherd GM, Chen WR, Greer CA (2004) “Olfactory bulb” in The synaptic organization of the brain (Shepherd GM, Ed) (Oxford University Press, New York), pp. 165–216

    Google Scholar 

  67. Johnson, BA, Leon M (2000) Odorant molecular length: one aspect of the olfactory code. J Comp Neurol. 426:330–338

    CAS  PubMed  Google Scholar 

  68. Bozza T, McGann JP, Mombaerts P, Wachowiak M (2004) In vivo imaging of neuronal activity by targeted expression of a genetically encoded probe in the mouse. Neuron. 42:9–21

    CAS  PubMed  Google Scholar 

  69. Fried HU, Fuss SH, Korsching SI (2002) Selective imaging of presynaptic activity in the mouse olfactory bulb shows concentration and structure dependence of odor responses in identified glomeruli. Proc Natl Acad Sci USA. 99:3222–3227

    CAS  PubMed  Google Scholar 

  70. Meister M, Bonheoffer T (2001) Tuning and topography in an odor map on the rat olfactory bulb. J. Neurosci. 21:1351–1360

    CAS  PubMed  Google Scholar 

  71. Mori K, Takahashi YK, Igarashi KM, Yamaguchi M (2006) Maps of odorant molecular features in the Mammalian olfactory bulb. Physiol Rev. 86:409–433

    CAS  PubMed  Google Scholar 

  72. Xu F, Schaefer M, Kida I, Schafer JR, Liu N, Rothman DL, Hyder F, Restrepo D, Shepherd GM (2005) Simultaneous activation of mouse main and accessory olfactory bulbs by odors or pheromones. J Comp Neurol. 489:491–500

    PubMed  Google Scholar 

  73. Martin C, Grenier D, Thevenet M, Vigouroux M, Bertrand B, Janier M, Ravel N, Litaudon P (2007) fMRI visualization of transient activations in the rat olfactory bulb using short odor stimulations. NeuroImage. 36:1288–1293

    CAS  PubMed  Google Scholar 

  74. Kida I, Xu F, Shulman RG, Hyder F (2002) Mapping at glomerular resolution: fMRI of rat olfactory bulb. Magn. Reson. Med. 48:570–576

    PubMed  Google Scholar 

  75. Liu N, Xu F, Marenco L, Hyder F, Miller P, Shepherd GM (2004) Informatics approaches to functional MRI odor mapping of the rodent olfactory bulb: OdorMapBuilder and OdorMapDB. Neuroinformatics 2:3–18

    PubMed  Google Scholar 

  76. Jakob PM, Griswold MA, Edelman RR, Manning WJ, Sodickson DK (1999) Accelerated cardiac imaging using the SMASH technique. J Cardiovasc Magn Reson. 1:153–157

    CAS  PubMed  Google Scholar 

  77. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: Sensitivity encoding for fast MRI. Magn Reson Med. 42:952–962

    CAS  PubMed  Google Scholar 

  78. Holscher C, Schnee A, Dahmen H, Setia L, Mallot HA (2005) Rats are able to navigate in virtual environments. J Exp Biol. 208:561–569

    CAS  PubMed  Google Scholar 

  79. Sterling P, Demb JB (2004) “Retina” in The synaptic organization of the brain (Shepherd GM, Ed) (Oxford University Press, New York), pp. 217–269

    Google Scholar 

  80. Jacobs GH, Fenwick JA, Williams GA (2001) Cone-based vision of rats for ultraviolet and visible lights. J Exp Biol. 204:2439–2446

    CAS  PubMed  Google Scholar 

  81. Adams AD, Forrester JM (1968) The projection of the rat’s visual field on the cerebral cortex. Q J Exp Physiol Cogn Med Sci. 53:327–336

    CAS  PubMed  Google Scholar 

  82. Gias C, Hewson-Stoate N, Jones M, Johnston D, Mayhew JE, Coffey PJ (2005) Retinotopy within rat primary visual cortex using optical imaging. NeuroImage. 24:200–206

    CAS  PubMed  Google Scholar 

  83. Lund RD (1972) Anatomic studies on the superior colliculus. Invest Ophthalmol 11:434–441

    CAS  PubMed  Google Scholar 

  84. Girman SV, Sauve Y, Lund RD (1999) Receptive field properties of single neurons in rat primary visual cortex. J Neurophysiol. 82:301–311

    CAS  PubMed  Google Scholar 

  85. Ohki K, Chung S, Ch’ng YH, Kara P, Reid RC (2005) Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature. 433:597–603

    CAS  PubMed  Google Scholar 

  86. Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17:205–242

    CAS  PubMed  Google Scholar 

  87. Welker C, Woolsey TA (1974) Structure of layer IV in the somatosensory neocortex of the rat: description and comparison with the mouse. J Comp Neurol. 158:437–453

    CAS  PubMed  Google Scholar 

  88. Lu H, Mazaheri Y, Zhang R, Jesmanowicz A, Hyde JS (2003) Multishot partial-k-space EPI for high-resolution fMRI demonstrated in a rat whisker barrel stimulation model at 3T. Magn Reson Med. 50:1215–1222

    PubMed  Google Scholar 

  89. Simons DJ (1978) Response properties of vibrissa units in rat SI somatosensory neocortex. J Neurophys. 41:798–820

    CAS  Google Scholar 

  90. Gerrits RJ, Stein EA, Greene AS (1998) Blood flow increases linearly in rat somatosensory cortex with increased whisker movement frequency. Brain Res. 783:151–157

    CAS  PubMed  Google Scholar 

  91. Ances BM, Zarahn E, Greenberg JH, Detre JA (2000) Coupling of neural activation to blood flow in the somatosensory cortex of rats is time-intensity separable, but not linear. J Cereb Blood Flow Metab. 20:921–930

    CAS  PubMed  Google Scholar 

  92. Blood AJ, Pouratian N, Toga AW (2002) Temporally staggered forelimb stimulation modulates barrel cortex optical intrinsic signal responses to whisker stimulation. J Neurophysiol. 88:422–437

    PubMed  Google Scholar 

  93. Buerk DG, Ances BM, Greenberg JH, Detre JA (2003) Temporal dynamics of brain tissue nitric oxide during functional forepaw stimulation in rats. NeuroImage. 18:1–9

    PubMed  Google Scholar 

  94. Sheth SA, Nemoto M, Guiou M, Walker M, Pouratian N, Toga AW (2004) Linear and nonlinear relationships between neuronal activity, oxygen metabolism, and hemodynamic responses. Neuron. 42:347–355

    CAS  PubMed  Google Scholar 

  95. Xu S, Yang J, Li CQ, Zhu W, Shen J (2005) Metabolic alterations in focally activated primary somatosensory cortex of alpha-chloralose-anesthetized rats measured by 1H MRS at 11.7 T. NeuroImage. 28:401–409

    PubMed  Google Scholar 

  96. Morton DW, Keogh B, Lim K, Maravilla KR (2006) Functional brain imaging using a long intravenous half-life gadolinium-based contrast agent. Am J Neuroradiol. 27:1467–1471

    CAS  PubMed  Google Scholar 

  97. Lowe AS, Beech JS, Williams SC (2007) Small animal, whole brain fMRI: Innocuous and nociceptive forepaw stimulation. NeuroImage. 35:719–728

    PubMed  Google Scholar 

  98. Ogawa S, Lee TM, Stepnoski R, Chen W, Zhu XH, Ugurbil K (2000) An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds. Proc Natl Acad Sci USA. 97:11026–11031

    CAS  PubMed  Google Scholar 

  99. Kuo CC, Chen JH, Tsai CY, Liang KC, Yen CT (2005) BOLD signals correlate with ensemble unit activities in rat’s somatosensory cortex. Chin J Physiol. 48:200–209

    PubMed  Google Scholar 

  100. Stefanovic B, Schwindt W, Hoehn M, Silva AC (2007) Functional uncoupling of hemodynamic from neuronal response by inhibition of neuronal nitric oxide synthase. J Cereb Blood Flow Metab. 27:741–754

    CAS  PubMed  Google Scholar 

  101. Huttunen JK, Grohn O, Penttonen M (2008) Coupling between simultaneously recorded BOLD response and neuronal activity in the rat somatosensory cortex. NeuroImage. 39:775–785

    PubMed  Google Scholar 

  102. Lee SP, Silva AC, Ugurbil K, Kim SG (1999) Diffusion-weighted spin-echo fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal changes. Magn Reson Med. 42:919–928

    CAS  PubMed  Google Scholar 

  103. Silva AC, Lee SP, Yang G, Iadecola C, Kim SG (1999) Simultaneous blood oxygenation level-dependent and cerebral blood flow functional magnetic resonance imaging during forepaw stimulation in the rat. J Cereb Blood Flow Metab. 19:871–879

    CAS  PubMed  Google Scholar 

  104. Mandeville JB, Marota JJ, Ayata C, Moskowitz MA, Weisskoff RM, Rosen BR (1999) MRI measurement of the temporal evolution of relative CMRO2 during rat forepaw stimulation. Magn Reson Med. 42:944–951

    CAS  PubMed  Google Scholar 

  105. Kennan RP, Jacob RJ, Sherwin RS, Gore JC (2000) Effects of hypoglycemia on functional magnetic resonance imaging response to median nerve stimulation in the rat brain. J Cereb Blood Flow Metab. 20:1352–1359

    CAS  PubMed  Google Scholar 

  106. Kida I, Hyder F, Behar KL (2001) Inhibition of voltage-dependent sodium channels suppresses the functional magnetic resonance imaging response to forepaw somatosensory activation in the rodent. J Cereb Blood Flow Metab. 21:585–591

    CAS  PubMed  Google Scholar 

  107. Hyder F, Kida I, Behar KL, Kennan RP, Maciejewski PK, Rothman DL (2001) Quantitative functional imaging of the brain: Towards mapping neuronal activity by BOLD fMRI. NMR Biomed. 14:413–431

    CAS  PubMed  Google Scholar 

  108. Liu ZM, Schmidt KF, Sicard KM, Duong TQ (2004) Imaging oxygen consumption in forepaw somatosensory stimulation in rats under isoflurane anesthesia. Magn Reson Med. 52:277–285

    PubMed  Google Scholar 

  109. Lahti KM, Ferris CF, Li F, Sotak CH, King JA (1999) Comparison of evoked cortical activity in conscious and propofol-anesthetized rats using functional MRI. Magn Reson Med. 41:412–426

    CAS  PubMed  Google Scholar 

  110. Peeters RR, Tindemans I, De Schutter E, Van der Linden A (2001) Comparing BOLD fMRI signal changes in the awake and anesthetized rat during electrical forepaw stimulation. Magn Reson Imaging. 19: 821–826

    CAS  PubMed  Google Scholar 

  111. Sachdev RN, Champney GC, Lee H, Price RR, Pickens DR 3rd, Morgan VL, Stefansic JD, Melzer P, Ebner FF (2003) Experimental model for functional magnetic resonance imaging of somatic sensory cortex in the unanesthetized rat. NeuroImage. 19:742–750

    PubMed  Google Scholar 

  112. Chapin JK, Lin CS (1984) Mapping the body representation in the SI cortex of anesthetized and awake rats. J Comp Neurol. 229:199–213

    CAS  PubMed  Google Scholar 

  113. Kohn DF, Wixson SK, White WJ, Benson GJ (1997) Anesthesia and Analgesia in Laboratory Animals. (Academic Press, New York, USA)

    Google Scholar 

  114. Alfaro V, Palacios L (1997) Components of the blood acid-base disturbance that accompanies urethane anaesthesia in rats during normothermia and hypothermia. Clin Exp Pharmacol Physiol. 24:498–502

    CAS  PubMed  Google Scholar 

  115. Adrian ED (1941) Afferent discharges to the cerebral cortex from peripheral sense organs. J Physiol. 100:159–191

    CAS  PubMed  Google Scholar 

  116. Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol. 20:408–434

    CAS  PubMed  Google Scholar 

  117. John ER (1961) High nervous functions: Brain functions and learning. Annu Rev Physiol. 23:451–484

    CAS  PubMed  Google Scholar 

  118. Sceniak MP, Maciver MB (2006) Cellular actions of urethane on rat visual cortical neurons in vitro. J Neurophysiol. 95:3865–3874

    CAS  PubMed  Google Scholar 

  119. Siesjo BK (1978) Brain Energy Metabolism. (Wiley and Sons, New York, USA)

    Google Scholar 

  120. Antkowiak B (2001) How do general anaesthetics work? Naturwissenschaften. 88:201–213

    CAS  PubMed  Google Scholar 

  121. Bonvento G, Charbonne R, Correze JL, Borredon J, Seylaz J, Lacombe P (1994) Is alpha-chloralose plus halothane induction a suitable anesthetic regimen for cerebrovascular research? Brain Res. 665:213–221

    CAS  PubMed  Google Scholar 

  122. Austin VC, Blamire AM, Allers KA, Sharp T, Styles P, Matthews PM, Sibson NR (2005) Confounding effects of anesthesia on functional activation in rodent brain: A study of halothane and alpha-chloralose anesthesia. NeuroImage. 24:92–100

    CAS  PubMed  Google Scholar 

  123. Curtis JC, Kleinfeld D (2006) Seeing what the mouse sees with its vibrissae: A matter of behavioral state. Neuron. 50:524–526

    CAS  PubMed  Google Scholar 

  124. Shen J, Rothman DL, Hetherington HP, Pan JW (1999) Linear projection method for automatic slice shimming. Magn Reson Med. 42:1082–1088

    CAS  PubMed  Google Scholar 

  125. Miyasaka N, Takahashi K, Hetherington HP (2006) Fully automated shim mapping method for spectroscopic imaging of the mouse brain at 9.4 T. Magn Reson Med. 55:198–202

    PubMed  Google Scholar 

  126. Koch KM, Sacolick LI, Nixon TW, McIntyre S, Rothman DL, de Graaf RA (2007) Dynamically shimmed multivoxel 1H magnetic resonance spectroscopy and multislice magnetic resonance spectroscopic imaging of the human brain. Magn Reson Med. 57:587–591

    CAS  PubMed  Google Scholar 

  127. Wixson SK, Smiler KL (1997) “Anesthesia and analgesia in rodents” in Anesthesia and Analgesia in Laboratory Animals (Kohn DF, Wixson SK, White WJ, Benson GJ, Eds) (Academic Press, New York, USA) pp. 165–200

    Google Scholar 

  128. Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KL, Shulman RG (2006) Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow Metab. 26:865–877

    CAS  PubMed  Google Scholar 

  129. Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci. 10:1369–1376

    CAS  PubMed  Google Scholar 

  130. Meredith MA, Stein BE (1986) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J Neurophysiol. 56:640–662

    CAS  PubMed  Google Scholar 

  131. Meredith MA, Stein BE (1996) Spatial determinants of multisensory integration in cat superior colliculus neurons. J Neurophysiol. 75:1843–1857

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sanganahalli, B.G., Bailey, C.J., Herman, P., Hyder, F. (2009). Tactile and Non-tactile Sensory Paradigms for fMRI and Neurophysiologic Studies in Rodents. In: Hyder, F. (eds) Dynamic Brain Imaging. METHODS IN MOLECULAR BIOLOGY™, vol 489. Humana Press. https://doi.org/10.1007/978-1-59745-543-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-543-5_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-74-9

  • Online ISBN: 978-1-59745-543-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics