Skip to main content

DNA Transposons for Modification of Human Primary T Lymphocytes

  • Protocol
Genetic Modification of Hematopoietic Stem Cells

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 506))

Summary

Genetic modification of peripheral blood T lymphocytes (PBL) or hematopoietic stem cells (HSC) has been shown to be promising in the treatment of cancer (Nat Rev Cancer 3:35–45, 2003), transplant complications (Curr Opin Hematol 5:478–482, 1998), viral infections (Science 285:546–551, 1999), and immunodeficiencies (Nat Rev Immunol 2:615–621, 2002). There are also significant implications for the study of T cell biology (J Exp Med 191:2031–2037, 2000). Currently, there are three types of vectors that are commonly used for introducing genes into human primary T cells: oncoretroviral vectors, lentiviral vectors, and naked DNA. Oncoretroviral vectors transduce and integrate only in dividing cells. However, it has been shown that extended ex vivo culture, required by oncoretroviral-mediated gene transfer, may alter the biologic properties of T cells (Nat Med 4:775–780, 1998; Int Immunol 9:1073– 1083, 1997; Hum Gene Ther 11:1151–1164, 2001; Blood 15:1165–1173, 2002; Proc Natl Acad Sci U S A, 1994). HIV-1-derived lentiviral vectors have been shown to transduce a variety of slowly dividing or nondividing cells, including unstimulated T lymphocytes (Blood 96:1309–1316, 2000; Gene Ther 7:596–604, 2000; Blood 101:2167–2174, 2002; Hum Gene Ther 14:1089–1105, 2003). However, achieving effective gene transfer and expression using lentivirus vectors can be complex, and there is at least a perceived risk associated with clinical application of a vector based on a human pathogen (i.e., HIV-1). Recently it has been found that oncoretroviral and lentiviral vectors show a preference for integration into regulatory sequences and active genes, respectively (Cell 110:521–529, 2002; Science 300:1749–1751, 2003). Additionally, insertional mutagenesis has become a serious concern, after several patients treated with an oncoretroviral vector for X-linked SCID developed a leukemia-like syndrome associated with activation of the LMO2 oncogene (Science 302:415–419, 2003). Naked DNA-based genetic engineering of human T lymphocytes also requires T cells to be activated prior to gene transfer (Mol Ther 1:49–55, 2000; Blood 101:1637–1644, 2003; Blood 107:2643–2652, 2006). In addition, random integration by electroporation is of low efficiency. We have recently reported that the Sleeping Beauty transposon system can efficiently mediate stable transgene expression in human primary T cells without prior T cell activation (Blood 107:483–491, 2006). This chapter describes methodology for the introduction of SB transposons into human T cell cultures with subsequent integration and stable long-term expression at noticeably high efficiency for a nonviral gene transfer system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ivics, Z., Hackett, P. B., Plasterk, R. H., Izsvak, Z. (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501 –510

    Article  Google Scholar 

  2. Izsvak, Z., Ivics, Z. (2004) Sleeping Beauty transposon: biology and applications for molecular therapy. Mol Ther 9, 147 –156

    Article  CAS  PubMed  Google Scholar 

  3. Geurts, A. M., Yang, Y., Clark, K. J., et al. (2003) Gene transfer into genomes of human cells by the Sleeping Beauty transposon system. Mol Ther 8, 108 –117

    Article  CAS  PubMed  Google Scholar 

  4. Yant, S. R., Wu, X., Huang, Y., et al. (2005) High-resolution genome-wide mapping of transposon integration in mammals. Mol Cell Biol 25, 2085 –2094

    Article  CAS  PubMed  Google Scholar 

  5. Yant, S. R., Meuse, L., Chiu, W., Ivics, Z., Izsvak, Z., Kay, M. A. (2000) Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet 25, 35 –41

    Article  CAS  PubMed  Google Scholar 

  6. Belur, L. B., Frandsen, J. L., Dupuy, A. J., et al. (2003) Gene insertion and long-term expression in lung mediated by the Sleeping Beauty transposon system. Mol Ther 8, 501 –507

    Article  CAS  PubMed  Google Scholar 

  7. Luo, G., Ivics, Z., Izsvak, Z., Bradley, A. (1998) Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc Natl Acad Sci USA 95, 10769 –10773

    Article  CAS  PubMed  Google Scholar 

  8. Dupuy, A. J., Clark, K., Carlson, C. M., et al. (2002) Mammalian germ-line transgenesis by transposition. Proc Natl Acad Sci USA 99, 4495 –4499

    Article  CAS  PubMed  Google Scholar 

  9. Collier, L. S., Carlson, C. M., Ravimohan, S., Dupuy, A. J., Largaespada, D. A. (2005) Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436, 272 –276

    Article  CAS  PubMed  Google Scholar 

  10. Dupuy, A. J., Akagi, K., Largaespada, D. A., Copeland, N. G., Jenkins, N. A. (2005) Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436, 221 –226

    Article  CAS  PubMed  Google Scholar 

  11. Keng, V. W., Yae, K., Hayakawa, T., Mizuno, S., Uno, Y., Yusa, K., Kokubu, C., Kinoshita, T., Akagi, K., Jenkins, N. A., Copeland, N. G., Horie, K., Takeda, J. (2005) Region-specific saturation germline mutagenesis in mice using the Sleeping Beauty transposon system. Nat Methods 2, 763 –769

    Article  CAS  PubMed  Google Scholar 

  12. Kitada, K., Ishishita, S., Tosaka, K., Takahashi, R., Ueda, M., Keng, V. W., Horie, K., Takeda, J. (2007) Transposon-tagged mutagenesis in the rat. Nat Methods 4, 131 –133

    Article  CAS  PubMed  Google Scholar 

  13. Huang, X., Wilber, A. C., Bao, L., Tuong, D., Tolar, J., Orchard, P., et al., (2006) Stable gene transfer and expression in human primary T cells by the Sleeping Beauty transposon system. Blood 107, 483 –491

    Article  CAS  PubMed  Google Scholar 

  14. Akagi, Y., Isaka, Y., Akagi, A., et al. (1999). Transcriptional activation of a hybrid promoter composed of cytomegalovirus enhancer and beta-actin/beta-globin gene in glomeru-lar epithelial cells in vivo. Kidney Int 1999 51, 1265 –1269

    Article  Google Scholar 

  15. Amendola, M., Venneri, M. A., Biffi, A., Vigna, E., Naldini, L. (2004) Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 23, 108 –116

    Article  PubMed  Google Scholar 

  16. Levine, B. L., Bernstein, W. B., Aronson, N. E., et al. (2002) Adoptive transfer of cos-timulated CD4+ T cells induces expansion of peripheral T cells and decreased CCR5 expression in HIV infection. Nat Med 8, 47 –53

    Article  CAS  PubMed  Google Scholar 

  17. Riddell, S. R., Greenberg, P. D. (1990) The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells. J Immunol Methods 128, 189 –201

    Article  CAS  PubMed  Google Scholar 

  18. Sambrook, J., Russell, D. W. (2001) Molecular cloning: a laboratory manual. 3rd Edition. New York, NY : Cold Spring Harbor Laboratory Press

    Google Scholar 

  19. Hirt, B. (1967) Selective extraction of poly-oma DNA from infected mouse cell cultures. J Mol Biol 26, 365 –369

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid of Research, Artistry and Scholarship from the Graduate School, University of Minnesota, the Minnesota Medical Foundation, the Children's Cancer Research Fund, the Alliance for Cancer Gene Therapy Young Investigator Award, the G&P Foundation for Cancer Research, the Sidney Kimmel Foundation for Cancer Research Kimmel Scholar Award, and the National Blood Foundation. X.Z. is the recipient of an American Society of Hematology Junior Faculty Scholar Award.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press

About this protocol

Cite this protocol

Huang, X., Wilber, A., McIvor, R.S., Zhou, X. (2009). DNA Transposons for Modification of Human Primary T Lymphocytes. In: Baum, C. (eds) Genetic Modification of Hematopoietic Stem Cells. Methods In Molecular Biology™, vol 506. Humana Press. https://doi.org/10.1007/978-1-59745-409-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-409-4_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-980-2

  • Online ISBN: 978-1-59745-409-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics