Skip to main content

FM 1-43 Labeling of Synaptic Vesicle Pools at the Drosophila Neuromuscular Junction

  • Protocol
Exocytosis and Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 440))

  • 5960 Accesses

Summary

To maintain transmitter release during intense stimulation, neurons need to efficiently recycle vesicles at the synapse. Following membrane fusion, vesicles are reshaped and formed from the plasma membrane by bulk or clathrin-mediated endocytosis. Most synapses, including the Drosophila neuromuscular junction (NMJ), can also recycle synaptic vesicles directly by closing the fusion pore, a process referred to as “kiss and run.” While the process of clathrin-mediated vesicle retrieval is under intense investigation, the kiss-and-run phenomenon remains much less accepted. To gain better insight into the mechanisms of synaptic vesicle recycling, it is therefore critical not only to identify and characterize novel players involved in the process, but also to develop novel methods to study vesicle recycling. Although in recent years numerous techniques to study vesicle traffic have been developed (see also this volume), in this chapter we outline established procedures that use the fluorescent dye FM 1-43 or related compounds to study vesicle cycling. We describe how FM 1-43 can be used to study and visualize clathrin-mediated or bulk endocytosis from the presynaptic membrane as well as exocytosis of labeled vesicles at the Drosophila NMJ, one of the best-characterized model synapses to study synaptic function in a genetic model system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. 1. Rohrbough, J., Rushton, E., Palanker, L., et al. (2004) Ceramidase regulates synaptic vesicle exocytosis and trafficking. J. Neurosci. 24, 7789–7803.

    Article  CAS  PubMed  Google Scholar 

  2. 2. Sullivan, W., Ashburner, M., and Hawley, R.S. (2000) Drosophila Protocols, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  3. 3. Cochilla, A.J., Angleson, J.K., and Betz, W.J. (1999) Monitoring secretory membrane with FM1-43 fluorescence. Annu. Rev. Neurosci. 22, 1–10.

    Article  CAS  PubMed  Google Scholar 

  4. 4. Richards, D.A., Bai, J., and Chapman, E.R. (2005) Two modes of exocytosis at hippocampal synapses revealed by rate of FM1-43 efflux from individual vesicles. J. Cell Biol. 168, 929–939.

    Article  CAS  PubMed  Google Scholar 

  5. 5. Klingauf, J., Kavalali, E.T., and Tsien, R.W. (1998) Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 394, 581–585.

    Article  CAS  PubMed  Google Scholar 

  6. 6. Ramaswami, M., Krishnan, K.S., and Kelly, R.B. (1994) Intermediates in synaptic vesicle recycling revealed by optical imaging of Drosophila neuromuscular junctions. Neuron 13, 363–375.

    Article  CAS  PubMed  Google Scholar 

  7. 7. Verstreken, P., Kjaerulff, O., Lloyd, T.E., et al. (2002) Endophilin mutations block clathrin-mediated endocytosis but not neurotransmitter release. Cell 109, 101–112.

    Article  CAS  PubMed  Google Scholar 

  8. 8. Verstreken, P., Koh, T.W., Schulze, K.L., et al. (2003) Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 40, 733–48.

    Article  CAS  PubMed  Google Scholar 

  9. 9. Verstreken, P., Ly, C.V., Venken, K.J., Koh, T.W., Zhou, Y., and Bellen, H.J. (2005) Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47, 365–378.

    Article  CAS  PubMed  Google Scholar 

  10. 10. Koh, T.W., Verstreken, P., and Bellen, H.J. (2004) Dap160/intersectin acts as a stabilizing scaffold required for synaptic development and vesicle endocytosis. Neuron 43, 193–205.

    Article  CAS  PubMed  Google Scholar 

  11. 11. Marie, B., Sweeney, S.T., Poskanzer, K.E., Roos, J., Kelly, R.B., and Davis, G.W. (2004) Dap160/intersectin scaffolds the periactive zone to achieve high-fidelity endocytosis and normal synaptic growth. Neuron 43, 207–219.

    Article  CAS  PubMed  Google Scholar 

  12. 12. Trotta, N., Rodesch, C.K., Fergestad, T., and Broadie, K. (2004) Cellular bases of activity-dependent paralysis in Drosophila stress-sensitive mutants. J. Neurobiol. 60, 328–347.

    Article  CAS  PubMed  Google Scholar 

  13. 13. Hiesinger, P.R., Fayyazuddin, A., Mehta, S.Q., et al. (2005) The v-ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila. Cell 121, 607–620.

    Article  CAS  PubMed  Google Scholar 

  14. 14. Sun, J.Y., Wu, X.S., and Wu, L.G. (2002) Single and multiple vesicle fusion induce different rates of endocytosis at a central synapse. Nature 417, 555–559.

    Article  CAS  PubMed  Google Scholar 

  15. 15. Pawlu, C., DiAntonio, A., and Heckmann, M. (2004) Postfusional control of quantal current shape. Neuron 42, 607–618.

    Article  CAS  PubMed  Google Scholar 

  16. 16. Klyachko, V.A., and Jackson, M.B. (2002) Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature 418, 89–92.

    Article  CAS  PubMed  Google Scholar 

  17. 17. Harata, N.C., Choi, S., Pyle, J.L., Aravanis, A.M., and Tsien, R.W. (2006) Frequency-dependent kinetics and prevalence of kiss-and-run and reuse at hippocampal synapses studied with novel quenching methods. Neuron 49, 243–256.

    Article  CAS  PubMed  Google Scholar 

  18. 18. Dickman, D.K., Horne, J.A., Meinertzhagen, I.A., and Schwarz, T.L. (2005) A slowed classical pathway rather than kiss-and-run mediates endocytosis at synapses lacking synaptojanin and endophilin. Cell 123, 521–533.

    Article  CAS  PubMed  Google Scholar 

  19. 19. Granseth, B., Odermatt, B., Royle, S.J., and Lagnado, L. (2006) Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51, 773–786.

    Article  CAS  PubMed  Google Scholar 

  20. 20. Rizzoli, S.O., and Betz, W.J. (2005) Synaptic vesicle pools. Nat. Rev. Neurosci. 6, 57–69.

    Article  CAS  PubMed  Google Scholar 

  21. 21. Kuromi, H., and Kidokoro, Y. (2000) Tetanic stimulation recruits vesicles from reserve pool via a cAMP-mediated process in Drosophila synapses. Neuron 27, 133–143.

    Article  CAS  PubMed  Google Scholar 

  22. 22. Kuromi, H., and Kidokoro, Y. (2002) Selective replenishment of two vesicle pools depends on the source of Ca2+ at the Drosophila synapse. Neuron 35, 333–343.

    Article  CAS  PubMed  Google Scholar 

  23. 23. Ly, C.V., and Verstreken, P. (2006) Mitochondria at the synapse. Neuroscientist 12, 291–299.

    Article  CAS  PubMed  Google Scholar 

  24. 24. Acharya, U., Edwards, M.B., Jorquera, R.A., et al. (2006) Drosophila melanogaster Scramblases modulate synaptic transmission. J. Cell Biol. 173, 69–82.

    Article  CAS  PubMed  Google Scholar 

  25. 25. Keshishian, H., Broadie, K., Chiba, A., and Bate, M. (1996) The Drosophila neuromuscular junction: a model system for studying synaptic development and function. Annu. Rev. Neurosci. 19, 545–575.

    Article  CAS  PubMed  Google Scholar 

  26. 26. Johansen, J., Halpern, M.E., Johansen, K.M., and Keshishian, H. (1989) Stereotypic morphology of glutamatergic synapses on identified muscle cells of Drosophila larvae. J. Neurosci. 9, 710–725.

    CAS  PubMed  Google Scholar 

  27. 27. Delgado, R., Maureira, C., Oliva, C., Kidokoro, Y., and Labarca, P. (2000) Size of vesicle pools, rates of mobilization, and recycling at neuromuscular synapses of a Drosophila mutant, shibire. Neuron 28, 941–953.

    Article  CAS  PubMed  Google Scholar 

  28. 28. Parnas, D., Haghighi, A.P., Fetter, R.D., Kim, S.W., and Goodman, C.S. (2001) Regulation of postsynaptic structure and protein localization by the Rho-type guanine nucleotide exchange factor dPix. Neuron 32, 415–424.

    Article  CAS  PubMed  Google Scholar 

  29. 29. Kuromi, H., Honda, A., and Kidokoro, Y. (2004) Ca2+ influx through distinct routes controls exocytosis and endocytosis at Drosophila presynaptic terminals. Neuron 41, 101–111.

    Article  CAS  PubMed  Google Scholar 

  30. 30. Kuromi, H., and Kidokoro, Y. (1999) The optically determined size of exo/endo cycling vesicle pool correlates with the quantal content at the neuromuscular junction of Drosophila larvae. J. Neurosci. 19, 1557–1565.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Nikolaos Giagtzoglou, Hiroshi Tsuda, and Koen J.T. Venken for helpful comments. This work was supported by HHMI, and HJB is an HHMI investigator. P.V. was supported by an R.L. Kirchstein NRS award and a Marie Curie Excellence grant.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Verstreken, P., Ohyama, T., Bellen, H.J. (2008). FM 1-43 Labeling of Synaptic Vesicle Pools at the Drosophila Neuromuscular Junction. In: Ivanov, A.I. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 440. Humana Press. https://doi.org/10.1007/978-1-59745-178-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-178-9_26

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-865-2

  • Online ISBN: 978-1-59745-178-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics