Skip to main content

CRISPR/Cas9-Mediated Genome Editing for Huntington’s Disease

  • Protocol
  • First Online:
Huntington’s Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1780))

Abstract

This chapter describes the potential use of viral-mediated gene transfer in the central nervous system for genome editing in the context of Huntington’s disease. Here, we provide protocols that cover the design of various genome editing strategies, the cloning of CRISPR/Cas9 elements into lentiviral vectors, and the assessment of cleavage efficiency, as well as potential unwanted effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Urnov FD, Rebar EJ, Holmes MC et al (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  3. Im W, Moon J, Kim M (2016) Applications of CRISPR/Cas9 for gene editing in hereditary movement disorders. J Mov Disord 9:136–143

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fagerlund RD, Staals RH, Fineran PC (2015) The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biol 16:251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ran FA, Cong L, Yan WX et al (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Riordan SM, Heruth DP, Zhang LQ, Ye SQ (2015) Application of CRISPR/Cas9 for biomedical discoveries. Cell Biosci 5:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang F, Qi LS (2016) Applications of CRISPR genome engineering in cell biology. Trends Cell Biol 26:875–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Heyer WD, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Walters BJ, Azam AB, Gillon CJ et al (2015) Advanced in vivo use of CRISPR/Cas9 and anti-sense DNA inhibition for gene manipulation in the brain. Front Genet 6:362

    PubMed  Google Scholar 

  11. Bates GP, Dorsey R, Gusella JF et al (2015) Huntington disease. Nat Rev Dis Primers 1:15005

    Article  PubMed  Google Scholar 

  12. Smith A, Zanardi T, Norris D et al (2016) Antisense oligonucleotides enter clinical trials. HD Insights 13:10–15

    Google Scholar 

  13. Boudreau RL, McBride JL, Martins I et al (2009) Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington’s disease mice. Mol Ther 17:1053–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Drouet V, Perrin V, Hassig R et al (2009) Sustained effects of nonallele-specific Huntingtin silencing. Ann Neurol 65:276–285

    Article  CAS  PubMed  Google Scholar 

  15. Wang G, Liu X, Gaertig MA et al (2016) Ablation of huntingtin in adult neurons is nondeleterious but its depletion in young mice causes acute pancreatitis. Proc Natl Acad Sci U S A 113:3359–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kay C, Skotte NH, Southwell AL, Hayden MR (2014) Personalized gene silencing therapeutics for Huntington disease. Clin Genet 86:29–36

    Article  CAS  PubMed  Google Scholar 

  17. Lee JM, Gillis T, Mysore JS et al (2012) Common SNP-based haplotype analysis of the 4p16.3 Huntington disease gene region. Am J Hum Genet 90:434–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee JM, Kim KH, Shin A et al (2015) Sequence-level analysis of the major European Huntington disease haplotype. Am J Hum Genet 97:435–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Warby SC, Montpetit A, Hayden AR et al (2009) CAG expansion in the Huntington disease gene is associated with a specific and targetable predisposing haplogroup. Am J Hum Genet 84:351–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Warby SC, Visscher H, Collins JA et al (2011) HTT haplotypes contribute to differences in Huntington disease prevalence between Europe and East Asia. Eur J Hum Genet 19:561–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Southwell AL, Skotte NH, Bennett CF, Hayden MR (2012) Antisense oligonucleotide therapeutics for inherited neurodegenerative diseases. Trends Mol Med 18:634–643. https://doi.org/10.1016/j.molmed.2012.09.001

    Article  PubMed  CAS  Google Scholar 

  22. Aronin N, DiFiglia M (2014) Huntingtin-lowering strategies in Huntington’s disease: antisense oligonucleotides, small RNAs, and gene editing. Mov Disord 29:1455–1461

    Article  CAS  PubMed  Google Scholar 

  23. Drouet V, Ruiz M, Zala D et al (2014) Allele-specific silencing of mutant huntingtin in rodent brain and human stem cells. PLoS One 9:e99341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Skotte NH, Southwell AL, Ostergaard ME et al (2014) Allele-specific suppression of mutant huntingtin using antisense oligonucleotides: providing a therapeutic option for all Huntington disease patients. PLoS One 9:e107434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shin JW, Kim KH, Chao MJ et al (2016) Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet 25:4566–4576

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Monteys AM, Ebanks SA, Keiser MS, Davidson BL (2017) CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Mol Ther 25:12–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu J, Shui SL (2016) Delivery methods for site-specific nucleases: achieving the full potential of therapeutic gene editing. J Control Release 244:83–97

    Article  CAS  PubMed  Google Scholar 

  28. Wang L, Li F, Dang L et al (2016) In vivo delivery systems for therapeutic genome editing. Int J Mol Sci 17:pii.E626

    Article  CAS  Google Scholar 

  29. Delzor A, Dufour N, Deglon N (2014) Lentiviral vectors in Huntington’s disease research and therapy. In: Brambilla R (ed) Viral vector approaches in neurobiology and brain diseases book series, Neuromethods, vol 82. Humana Press, Totowa NJ, pp 193–220

    Chapter  Google Scholar 

  30. McClure C, Cole KL, Wulff P et al (2011) Production and titering of recombinant adeno-associated viral vectors. J Vis Exp 57:e3348

    Google Scholar 

  31. Merten OW, Hebben M, Bovolenta C (2016) Production of lentiviral vectors. Mol Ther Methods Clin Dev 3:16017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim D, Bae S, Park J et al (2015) Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 12:237–243

    Article  CAS  PubMed  Google Scholar 

  33. Slaymaker IM, Gao L, Zetsche B et al (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88

    Article  CAS  PubMed  Google Scholar 

  34. Tsai SQ, Zheng Z, Nguyen NT et al (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33:187–197

    Article  CAS  PubMed  Google Scholar 

  35. Doench JG, Hartenian E, Graham DB et al (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32:1262–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fu Y, Sander JD, Reyon D et al (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tycko J, Myer VE, Hsu PD (2016) Methods for optimizing CRISPR-Cas9 genome editing specificity. Mol Cell 63:355–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bolukbasi MF, Gupta A, Oikemus S et al (2015) DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nat Methods 12:1150–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ran FA (2016) Adaptation of CRISPR nucleases for eukaryotic applications. Anal Biochem 532:90–94

    Article  CAS  PubMed  Google Scholar 

  43. Doench JG, Fusi N, Sullender M et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11:783–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gray SJ, Foti SB, Schwartz JW et al (2011) Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum Gene Ther 22:1143–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kabadi AM, Ousterout DG, Hilton IB, Gersbach CA (2014) Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res 42:e147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bauer DE, Canver MC, Orkin SH (2015) Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9. J Vis Exp:e52118. https://doi.org/10.3791/52118

  49. Maddalo D, Manchado E, Concepcion CP et al (2014) In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516:423–427. https://doi.org/10.1038/nature13902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Vouillot L, Thelie A, Pollet N (2015) Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 5:407–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brinkman EK, Chen T, Amendola M, van Steensel B (2014) Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42:e168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pinello L, Canver MC, Hoban MD et al (2016) Analyzing CRISPR genome-editing experiments with CRISPResso. Nat Biotechnol 34:695–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smith C, Gore A, Yan W et al (2014) Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell 15:12–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Veres A, Gosis BS, Ding Q et al (2014) Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell 15:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Crosetto N, Mitra A, Silva MJ et al (2013) Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat Methods 10:361–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dang Y, Jia G, Choi J, Ma H et al (2015) Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol 16:280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cho SW, Kim S, Kim Y et al (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24:132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kleinstiver BP, Pattanayak V, Prew MS et al (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shen B, Zhang W, Zhang J et al (2014) Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 11:399–402

    Article  CAS  PubMed  Google Scholar 

  60. Hodgson JG, Agopyan N, Gutekunst CA et al (1999) A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23:181–192

    Article  CAS  PubMed  Google Scholar 

  61. Gray M, Shirasaki DI, Cepeda C et al (2008) Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci 28:6182–6195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Southwell AL, Warby SC, Carroll JB et al (2013) A fully humanized transgenic mouse model of Huntington disease. Hum Mol Genet 22:18–34

    Article  CAS  PubMed  Google Scholar 

  63. Southwell AL, Skotte NH, Villanueva EB et al (2017) A novel humanized mouse model of Huntington disease for preclinical development of therapeutics targeting mutant huntingtin alleles. Hum Mol Genet 26:1115–1132

    PubMed  CAS  Google Scholar 

  64. Swiech L, Heidenreich M, Banerjee A et al (2015) In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33:102–106

    Article  CAS  PubMed  Google Scholar 

  65. Waltz E (2016) CRISPR-edited crops free to enter market, skip regulation. Nat Biotechnol 34:582

    Article  CAS  PubMed  Google Scholar 

  66. Waltz E (2016) Gene-edited CRISPR mushroom escapes US regulation. Nature 532:293

    Article  CAS  PubMed  Google Scholar 

  67. Callaway E (2016) BIOTECHNOLOGY Embryo editing gets green light. Nature 530:18

    Article  CAS  PubMed  Google Scholar 

  68. Hayden EC (2016) Tomorrow’s children: what would genome editing really mean for future generations? Nature 530:402–405

    Article  CAS  Google Scholar 

  69. Ledford H (2017) Court rules on CRISPR. Nature 542:401

    Article  CAS  PubMed  Google Scholar 

  70. Cyranoski D (2016) CRISPR gene-editing tested in a person for the first time. Nature 539:479

    Article  CAS  PubMed  Google Scholar 

  71. Kleinstiver BP, Prew MS, Tsai SQ et al (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sakuma T, Nishikawa A, Kume S et al (2014) Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci Rep 4:5400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vad-Nielsen J, Lin L, Bolund L et al (2016) Golden Gate Assembly of CRISPR gRNA expression array for simultaneously targeting multiple genes. Cell Mol Life Sci 73:4315–4325

    Article  CAS  PubMed  Google Scholar 

  74. Jiang W, Zhao X, Gabrieli T et al (2015) Cas9-Assisted Targeting of CHromosome segments CATCH enables one-step targeted cloning of large gene clusters. Nat Commun 6:8101

    Article  PubMed  Google Scholar 

  75. Wang JW, Wang A, Li K et al (2015) CRISPR/Cas9 nuclease cleavage combined with Gibson assembly for seamless cloning. Biotechniques 58:161–170

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Maria Rey for the preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Déglon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vachey, G., Déglon, N. (2018). CRISPR/Cas9-Mediated Genome Editing for Huntington’s Disease. In: Precious, S., Rosser, A., Dunnett, S. (eds) Huntington’s Disease. Methods in Molecular Biology, vol 1780. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7825-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7825-0_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7824-3

  • Online ISBN: 978-1-4939-7825-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics