Skip to main content

Membrane Repair Assay for Human Skeletal Muscle Cells

  • Protocol
  • First Online:
Skeletal Muscle Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1668))

  • 2254 Accesses

Abstract

The characterization of the membrane repair machinery in human skeletal muscle has become crucial, since it has been shown that some muscular dystrophies result from a defect of this fundamental physiological process. Deciphering membrane repair mechanism requires the development of methodologies allowing studying the response of skeletal muscle cells to sarcolemma damage and identifying candidate proteins playing a role in the membrane repair machinery. Here, we describe a protocol that is based on the creation of cell membrane disruption by infrared laser irradiation in human myotubes. Membrane disruption and repair are assayed by monitoring the incorporation into myotubes of the membrane probe FM1-43. This methodology has recently enabled us to show that Annexin-A5 is required for membrane repair in human skeletal muscle cells (Carmeille et al., Biochim Biophys Acta 1863:2267–2279, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McNeil PL, Khakee R (1992) Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage. Am J Pathol 140:1097–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Clarke MS, Caldwell RW, Chiao H, Miyake K, McNeil PL (1995) Contraction-induced cell wounding and release of fibroblast growth factor in heart. Circ Res 76:927–934

    Article  CAS  PubMed  Google Scholar 

  3. Bansal D, Miyake K, Vogel SS, Groh S, Chen C-C, Williamson R, McNeil PL, Campbell KP (2003) Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 423:168–172

    Article  CAS  PubMed  Google Scholar 

  4. McNeil PL, Vogel SS, Miyake K, Terasaki M (2000) Patching plasma membrane disruptions with cytoplasmic membrane. J Cell Sci 113(Pt 1):1891–1902

    CAS  PubMed  Google Scholar 

  5. Zhao P, Xu L, Ait-Mou Y, de Tombe PP, Han R (2011) Equal force recovery in dysferlin-deficient and wild-type muscles following saponin exposure. J Biomed Biotechnol 2011:235216

    PubMed  PubMed Central  Google Scholar 

  6. Thiery J, Keefe D, Saffarian S, Martinvalet D, Walch M, Boucrot E, Kirchhausen T, Lieberman J (2010) Perforin activates clathrin- and dynamin-dependent endocytosis, which is required for plasma membrane repair and delivery of granzyme B for granzyme-mediated apoptosis. Blood 115:1582–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Babiychuk EB, Monastyrskaya K, Potez S, Draeger A (2009) Intracellular Ca(2+) operates a switch between repair and lysis of streptolysin O-perforated cells. Cell Death Differ 16:1126–1134

    Article  CAS  PubMed  Google Scholar 

  8. Terasaki M, Miyake K, McNeil PL (1997) Large plasma membrane disruptions are rapidly resealed by Ca2+-dependent vesicle-vesicle fusion events. J Cell Biol 139:63–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miyake K, McNeil PL, Suzuki K, Tsunoda R, Sugai N (2001) An actin barrier to resealing. J Cell Sci 114:3487–3494

    CAS  PubMed  Google Scholar 

  10. Lennon NJ, Kho A, Bacskai BJ, Perlmutter SL, Hyman BT, Brown RH (2003) Dysferlin interacts with annexins A1 and A2 and mediates sarcolemmal wound-healing. J Biol Chem 278:50466–50473

    Article  CAS  PubMed  Google Scholar 

  11. Steinhardt RA, Bi G, Alderton JM (1994) Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263:390–393

    Article  CAS  PubMed  Google Scholar 

  12. Togo T, Alderton JM, Bi GQ, Steinhardt RA (1999) The mechanism of facilitated cell membrane resealing. J Cell Sci 112:719–731

    CAS  PubMed  Google Scholar 

  13. McNeil PL, Baker MM (2001) Cell surface events during resealing visualized by scanning-electron microscopy. Cell Tissue Res 304:141–146

    Article  CAS  PubMed  Google Scholar 

  14. Yasuda S, Townsend D, Michele DE, Favre EG, Day SM, Metzger JM (2005) Dystrophic heart failure blocked by membrane sealant poloxamer. Nature 436:1025–1029

    Article  CAS  PubMed  Google Scholar 

  15. McNeil PL, Kirchhausen T (2005) An emergency response team for membrane repair. Nat Rev Mol Cell Biol 6:499–505

    Article  CAS  PubMed  Google Scholar 

  16. Bouter A, Gounou C, Bérat R, Tan S, Gallois B, Granier T, d’Estaintot BL, Pöschl E, Brachvogel B, Brisson AR (2011) Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair. Nat Commun 2:270

    Article  PubMed  PubMed Central  Google Scholar 

  17. Idone V, Tam C, Goss JW, Toomre D, Pypaert M, Andrews NW (2008) Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis. J Cell Biol 180:905–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tam C, Idone V, Devlin C, Fernandes MC, Flannery A, He X, Schuchman E, Tabas I, Andrews NW (2010) Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair. J Cell Biol 189:1027–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carmeille R, Bouvet F, Tan S, Croissant C, Gounou C, Mamchaoui K, Mouly V, Brisson AR, Bouter A (2016) Membrane repair of human skeletal muscle cells requires Annexin-A5. Biochim Biophys Acta 1863:2267–2279

    Article  CAS  PubMed  Google Scholar 

  20. Cai C, Masumiya H, Weisleder N, Matsuda N, Nishi M, Hwang M, Ko J-K, Lin P, Thornton A, Zhao X, Pan Z, Komazaki S, Brotto M, Takeshima H, Ma J (2009) MG53 nucleates assembly of cell membrane repair machinery. Nat Cell Biol 11:56–64

    Article  CAS  PubMed  Google Scholar 

  21. Jimenez AJ, Maiuri P, Lafaurie-Janvore J, Divoux S, Piel M, Perez F (2014) ESCRT machinery is required for plasma membrane repair. Science 343:1247136

    Article  PubMed  Google Scholar 

  22. McNeil PL, Miyake K, Vogel SS (2003) The endomembrane requirement for cell surface repair. Proc Natl Acad Sci U S A 100:4592–4597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhu C-H, Mouly V, Cooper RN, Mamchaoui K, Bigot A, Shay JW, Di Santo JP, Butler-Browne GS, Wright WE (2007) Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies. Aging Cell 6:515–523

    Article  CAS  PubMed  Google Scholar 

  24. Humphrey GW, Mekhedov E, Blank PS, de Morree A, Pekkurnaz G, Nagaraju K, Zimmerberg J (2012) GREG cells, a dysferlin-deficient myogenic mouse cell line. Exp Cell Res 318:127–135

    Article  CAS  PubMed  Google Scholar 

  25. Carmeille R, Degrelle SA, Plawinski L, Bouvet F, Gounou C, Evain-Brion D, Brisson AR, Bouter A (2015) Annexin-A5 promotes membrane resealing in human trophoblasts. Biochim Biophys Acta 1853(9):2033–2044

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the AFM-Telethon (Research program 17140 to A.B..). The platform for immortalization of human cells of the Center of Research in Myology (Paris, France) is acknowledged for the gift of human immortalized LHCN-M2 myoblasts. The expert help of Christel Poujol, Philippe Legros, Laure Malicieux, Sébastien Marais, and Fabrice Cordelières at the Bordeaux Imaging Center, a service unit of the CNRS-INSERM and Bordeaux University, member of the national infrastructure France BioImaging, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Bouter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Carmeille, R., Croissant, C., Bouvet, F., Bouter, A. (2017). Membrane Repair Assay for Human Skeletal Muscle Cells. In: Ryall, J. (eds) Skeletal Muscle Development. Methods in Molecular Biology, vol 1668. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7283-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7283-8_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7282-1

  • Online ISBN: 978-1-4939-7283-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics