Abstract
The introduction of multiphoton microscopy has dramatically broadened the scope of intravital imaging studies and has allowed researchers to validate and refine basic mechanistic concepts in many areas of biology within the context of physiologically relevant tissue microenvironments. This has also led to new insights into the behavior of immune cells at steady state, and how their behaviors are altered during an immune response. At the same time, advances in the humanized mouse model have allowed for in vivo studies of strictly human pathogens, such as HIV-1. Here, we describe in detail an intravital microscopy approach to visualize the dynamic behavior of HIV-infected T cells within the lymph nodes of live, anesthetized humanized mice.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76
Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940
Cahalan MD, Parker I, Wei SH, Miller MJ (2002) Two-photon tissue imaging: seeing the immune system in a fresh light. Nat Rev Immunol 2:872–880
Pittet MJ, Mempel TR (2008) Regulation of T-cell migration and effector functions: insights from in vivo imaging studies. Immunol Rev 221:107–129
Denton PW, Estes JD, Sun Z, Othieno FA, Wei BL, Wege AK, Powell DA, Payne D, Haase AT, Garcia JV (2008) Antiretroviral pre-exposure prophylaxis prevents vaginal transmission of HIV-1 in humanized BLT mice. PLoS Med 5, e16
Denton PW, Othieno F, Martinez-Torres F, Zou W, Krisko JF, Fleming E, Zein S, Powell DA, Wahl A, Kwak YT, Welch BD, Kay MS, Payne DA, Gallay P, Appella E, Estes JD, Lu M, Garcia JV (2011) One percent tenofovir applied topically to humanized BLT mice and used according to the CAPRISA 004 experimental design demonstrates partial protection from vaginal HIV infection, validating the BLT model for evaluation of new microbicide candidates. J Virol 85:7582–7593
Murooka TT, Deruaz M, Marangoni F, Vrbanac VD, Seung E, von Andrian UH, Tager AM, Luster AD, Mempel TR (2012) HIV-infected T cells are migratory vehicles for viral dissemination. Nature 490:283–287
Sun Z, Denton PW, Estes JD, Othieno FA, Wei BL, Wege AK, Melkus MW, Padgett-Thomas A, Zupancic M, Haase AT, Garcia JV (2007) Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J Exp Med 204:705–714
Brainard DM, Seung E, Frahm N, Cariappa A, Bailey CC, Hart WK, Shin HS, Brooks SF, Knight HL, Eichbaum Q, Yang YG, Sykes M, Walker BD, Freeman GJ, Pillai S, Westmoreland SV, Brander C, Luster AD, Tager AM (2009) Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J Virol 83:7305–7321
Dudek TE, No DC, Seung E, Vrbanac VD, Fadda L, Bhoumik P, Boutwell CL, Power KA, Gladden AD, Battis L, Mellors EF, Tivey TR, Gao X, Altfeld M, Luster AD, Tager AM, Allen TM (2012) Rapid evolution of HIV-1 to functional CD8(+) T cell responses in humanized BLT mice. Sci Transl Med 4:143ra198. doi:10.1126/scitranslmed.3003984, 4/143/143ra98 [pii]
Denton PW, Olesen R, Choudhary SK, Archin NM, Wahl A, Swanson MD, Chateau M, Nochi T, Krisko JF, Spagnuolo RA, Margolis DM, Garcia JV (2012) Generation of HIV latency in humanized BLT mice. J Virol 86:630–634
Pirounaki M, Heyden NA, Arens M, Ratner L (2000) Rapid phenotypic drug susceptibility assay for HIV-1 with a CCR5 expressing indicator cell line. J Virol Methods 85:151–161
Murooka TT, Mempel TR (2012) Multiphoton intravital microscopy to study lymphocyte motility in lymph nodes. Methods Mol Biol 757:247–257
Miller MJ, Wei SH, Parker I, Cahalan MD (2002) Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296:1869–1873
Beltman JB, Maree AF, de Boer RJ (2009) Analysing immune cell migration. Nat Rev Immunol 9:789–798
Gelderblom HC, Vatakis DN, Burke SA, Lawrie SD, Bristol GC, Levy DN (2008) Viral complementation allows HIV-1 replication without integration. Retrovirology 5:60. doi:10.1186/1742-4690-5-60, 1742-4690-5-60 [pii]
Brown A, Gartner S, Kawano T, Benoit N, Cheng-Mayer C (2005) HLA-A2 down-regulation on primary human macrophages infected with an M-tropic EGFP-tagged HIV-1 reporter virus. J Leukoc Biol 78:675–685
Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909
Arhel N, Genovesio A, Kim KA, Miko S, Perret E, Olivo-Marin JC, Shorte S, Charneau P (2006) Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nat Methods 3:817–824. doi:10.1038/nmeth928, nmeth928 [pii]
Eckhardt M, Anders M, Muranyi W, Heilemann M, Krijnse-Locker J, Muller BA (2011) SNAP-tagged derivative of HIV-1: a versatile tool to study virus-cell interactions. PLoS One 6:e22007. doi:10.1371/journal.pone.0022007, PONE-D-11-06412 [pii]
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Science+Business Media New York
About this protocol
Cite this protocol
Sharaf, R., Mempel, T.R., Murooka, T.T. (2016). Visualizing the Behavior of HIV-Infected T Cells In Vivo Using Multiphoton Intravital Microscopy. In: Prasad, V., Kalpana, G. (eds) HIV Protocols. Methods in Molecular Biology, vol 1354. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3046-3_13
Download citation
DOI: https://doi.org/10.1007/978-1-4939-3046-3_13
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-3045-6
Online ISBN: 978-1-4939-3046-3
eBook Packages: Springer Protocols