Skip to main content

Replication of Human Papillomavirus in Culture

  • Protocol
  • First Online:
Cervical Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1249))

Abstract

Human papillomaviruses (HPV) are the major factor in causing cervical cancer as well as being implicated in causing oral and anal cancers. The life cycle of HPV is tied to the epithelial differentiation system, as only native virus can be produced in stratified human skin. Initially, HPV research was only possible utilizing recombinant systems in monolayer culture. With new cell culture technology, systems using differentiated skin have allowed HPV to be studied in its native environment. Here, we describe current research studying native virions in differentiated skin including viral assembly, maturation, capsid protein interactions, and L2 cross-neutralizing epitopes. In doing so, we hope to show how differentiating skin systems have increased our knowledge of HPV biology and identify gaps in our knowledge about this important virus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Villiers EM et al (2004) Classification of papillomaviruses. Virology 324(1):17–27

    Article  PubMed  Google Scholar 

  2. Longworth MS, Laimins LA (2004) Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 68(2):362–372

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Madsen BS et al (2008) Risk factors for invasive squamous cell carcinoma of the vulva and vagina–population-based case-control study in Denmark. Int J Cancer 122(12):2827–2834

    Article  PubMed  CAS  Google Scholar 

  4. D’Souza G et al (2007) Case-control study of human papillomavirus and oropharyngeal cancer. N Engl J Med 356(19):1944–1956

    Article  PubMed  Google Scholar 

  5. Zheng ZM, Baker CC (2006) Papillomavirus genome structure, expression, and post-transcriptional regulation. Front Biosci 11:2286–2302

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Meyers C et al (1992) Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation. Science 257(5072):971–973

    Article  PubMed  CAS  Google Scholar 

  7. Roberts S et al (1994) Mutational analysis of human papillomavirus E4 proteins: identification of structural features important in the formation of cytoplasmic E4/cytokeratin networks in epithelial cells. J Virol 68(10):6432–6445

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Bedell MA et al (1991) Amplification of human papillomavirus genomes in vitro is dependent on epithelial differentiation. J Virol 65(5):2254–2260

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Kirnbauer R et al (1992) Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci U S A 89(24):12180–12184

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Kirnbauer R et al (1993) Efficient self-assembly of human papillomavirus type 16L1 and L1-L2 into virus-like particles. J Virol 67(12):6929–6936

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Rose RC et al (1993) Expression of human papillomavirus type 11L1 protein in insect cells: in vivo and in vitro assembly of viruslike particles. J Virol 67(4):1936–1944

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Hagensee ME et al (1994) Three-dimensional structure of vaccinia virus-produced human papillomavirus type 1 capsids. J Virol 68(7):4503–4505

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Hagensee ME, Yaegashi N, Galloway DA (1993) Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J Virol 67(1):315–322

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Chen XS et al (2000) Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol Cell 5(3):557–567

    Article  PubMed  CAS  Google Scholar 

  15. Zhang W et al (1998) Expression of human papillomavirus type 16L1 protein in Escherichia coli: denaturation, renaturation, and self-assembly of virus-like particles in vitro. Virology 243(2):423–431

    Article  PubMed  CAS  Google Scholar 

  16. Buck CB et al (2005) Maturation of papillomavirus capsids. J Virol 79(5):2839–2846

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Gambhira R et al (2007) A protective and broadly cross-neutralizing epitope of human papillomavirus L2. J Virol 81(24):13927–13931

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Culp TD, Christensen ND (2004) Kinetics of in vitro adsorption and entry of papillomavirus virions. Virology 319(1):152–161

    Article  PubMed  CAS  Google Scholar 

  19. Pyeon D, Lambert PF, Ahlquist P (2005) Production of infectious human papillomavirus independently of viral replication and epithelial cell differentiation. Proc Natl Acad Sci U S A 102(26):9311–9316

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Meyers C, Mayer TJ, Ozbun MA (1997) Synthesis of infectious human papillomavirus type 18 in differentiating epithelium transfected with viral DNA. J Virol 71(10):7381–7386

    PubMed  CAS  PubMed Central  Google Scholar 

  21. McLaughlin-Drubin ME, Christensen ND, Meyers C (2004) Propagation, infection, and neutralization of authentic HPV16 virus. Virology 322(2):213–219

    Article  PubMed  CAS  Google Scholar 

  22. McLaughlin-Drubin ME et al (2003) Human papillomavirus type 45 propagation, infection, and neutralization. Virology 312(1):1–7

    Article  PubMed  CAS  Google Scholar 

  23. Gu W et al (2004) tRNASer(CGA) differentially regulates expression of wild-type and codon-modified papillomavirus L1 genes. Nucleic Acids Res 32(15):4448–4461

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. McLaughlin-Drubin ME, Meyers C (2005) Propagation of infectious, high-risk HPV in organotypic “raft” culture. Methods Mol Med 119:171–186

    PubMed  CAS  Google Scholar 

  25. Howett MK, Christensen ND, Kreider JW (1997) Tissue xenografts as a model system for study of the pathogenesis of papillomaviruses. Clin Dermatol 15(2):229–236

    Article  PubMed  CAS  Google Scholar 

  26. Moriyama T, Sorokin A (2009) BK virus (BKV): infection, propagation, quantitation, purification, labeling, and analysis of cell entry. Curr Protoc Cell Biol Chapter 26:Unit 26 2

    Google Scholar 

  27. Leibowitz J, Kaufman G, Liu P (2011) Coronaviruses: propagation, quantification, storage, and construction of recombinant mouse hepatitis virus. Curr Protoc Microbiol 2011. Chapter 15:Unit 15E 1

    Google Scholar 

  28. Yi M (2010) Hepatitis C virus: propagation, quantification, and storage. Curr Protoc Microbiol. Chapter 15:Unit 15D 1

    Google Scholar 

  29. Bowser BS et al (2011) Human papillomavirus type 18 chimeras containing the L2/L1 capsid genes from evolutionarily diverse papillomavirus types generate infectious virus. Virus Res 160(1–2):246–255

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Chen HS et al (2010) Study of infectious virus production from HPV18/16 capsid chimeras. Virology 405(2):289–299

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Chen HS et al (2011) Papillomavirus capsid proteins mutually impact structure. Virology 412(2):378–383

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Conway MJ et al (2009) Overlapping and independent structural roles for human papillomavirus type 16L2 conserved cysteines. Virology 393(2):295–303

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Conway MJ et al (2011) Differentiation-dependent interpentameric disulfide bond stabilizes native human papillomavirus type 16. PLoS One 6(7):e22427

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Hummel M, Hudson JB, Laimins LA (1992) Differentiation-induced and constitutive transcription of human papillomavirus type 31b in cell lines containing viral episomes. J Virol 66(10):6070–6080

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Grassmann K et al (1996) Identification of a differentiation-inducible promoter in the E7 open reading frame of human papillomavirus type 16 (HPV-16) in raft cultures of a new cell line containing high copy numbers of episomal HPV-16 DNA. J Virol 70(4):2339–2349

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Ozbun MA, Meyers C (1997) Characterization of late gene transcripts expressed during vegetative replication of human papillomavirus type 31b. J Virol 71(7):5161–5172

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Hirochika H, Broker TR, Chow LT (1987) Enhancers and trans-acting E2 transcriptional factors of papillomaviruses. J Virol 61(8):2599–2606

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Gloss B, Bernard HU (1990) The E6/E7 promoter of human papillomavirus type 16 is activated in the absence of E2 proteins by a sequence-aberrant Sp1 distal element. J Virol 64(11):5577–5584

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Romanczuk H, Thierry F, Howley PM (1990) Mutational analysis of cis elements involved in E2 modulation of human papillomavirus type 16 P97 and type 18 P105 promoters. J Virol 64(6):2849–2859

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Kyo S, Tam A, Laimins LA (1995) Transcriptional activity of human papillomavirus type 31b enhancer is regulated through synergistic interaction of AP1 with two novel cellular factors. Virology 211(1):184–197

    Article  PubMed  CAS  Google Scholar 

  41. Kanaya T, Kyo S, Laimins LA (1997) The 5' region of the human papillomavirus type 31 upstream regulatory region acts as an enhancer which augments viral early expression through the action of YY1. Virology 237(1):159–169

    Article  PubMed  CAS  Google Scholar 

  42. Cumming RC et al (2004) Protein disulfide bond formation in the cytoplasm during oxidative stress. J Biol Chem 279(21):21749–21758

    Article  PubMed  CAS  Google Scholar 

  43. Wang X et al (2011) Construction of a full transcription map of human papillomavirus type 18 during productive viral infection. J Virol 85(16):8080–8092

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Bodily JM, Meyers C (2005) Genetic analysis of the human papillomavirus type 31 differentiation-dependent late promoter. J Virol 79(6):3309–3321

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Bodily JM, Alam S, Meyers C (2006) Regulation of human papillomavirus type 31 late promoter activation and genome amplification by protein kinase C. Virology 348(2):328–340

    Article  PubMed  CAS  Google Scholar 

  46. Joshi A, Nagashima K, Freed EO (2006) Mutation of dileucine-like motifs in the human immunodeficiency virus type 1 capsid disrupts virus assembly, gag-gag interactions, gag-membrane binding, and virion maturation. J Virol 80(16):7939–7951

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Perez-Berna AJ et al (2012) The role of capsid maturation on adenovirus priming for sequential uncoating. J Biol Chem 287(37):31582–31595

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Hanslip SJ et al (2008) Intrinsic fluorescence as an analytical probe of virus-like particle assembly and maturation. Biochem Biophys Res Commun 375(3):351–355

    Article  PubMed  CAS  Google Scholar 

  49. Conway MJ et al (2009) Tissue-spanning redox gradient-dependent assembly of native human papillomavirus type 16 virions. J Virol 83(20):10515–10526

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Kennedy IM, Haddow JK, Clements JB (1991) A negative regulatory element in the human papillomavirus type 16 genome acts at the level of late mRNA stability. J Virol 65(4):2093–2097

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Sokolowski M et al (1998) mRNA instability elements in the human papillomavirus type 16L2 coding region. J Virol 72(2):1504–1515

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Zhao KN et al (2005) Gene codon composition determines differentiation-dependent expression of a viral capsid gene in keratinocytes in vitro and in vivo. Mol Cell Biol 25(19):8643–8655

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Bishop B et al (2007) Crystal structures of four types of human papillomavirus L1 capsid proteins: understanding the specificity of neutralizing monoclonal antibodies. J Biol Chem 282(43):31803–31811

    Article  PubMed  CAS  Google Scholar 

  54. Christensen ND, Kreider JW (1990) Antibody-mediated neutralization in vivo of infectious papillomaviruses. J Virol 64(7):3151–3156

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Wolf M et al (2010) Subunit interactions in bovine papillomavirus. Proc Natl Acad Sci U S A 107(14):6298–6303

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Modis Y, Trus BL, Harrison SC (2002) Atomic model of the papillomavirus capsid. EMBO J 21(18):4754–4762

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Ishii Y, Tanaka K, Kanda T (2003) Mutational analysis of human papillomavirus type 16 major capsid protein L1: the cysteines affecting the intermolecular bonding and structure of L1-capsids. Virology 308(1):128–136

    Article  PubMed  CAS  Google Scholar 

  58. Sapp M et al (1998) Papillomavirus assembly requires trimerization of the major capsid protein by disulfides between two highly conserved cysteines. J Virol 72(7):6186–6189

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Holmgren SC et al (2005) The minor capsid protein L2 contributes to two steps in the human papillomavirus type 31 life cycle. J Virol 79(7):3938–3948

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Fey SJ et al (1989) Demonstration of in vitro synthesis of human papilloma viral proteins from hand and foot warts. J Invest Dermatol 92(6):817–824

    Article  PubMed  CAS  Google Scholar 

  61. Larsen PM, Storgaard L, Fey SJ (1987) Proteins present in bovine papillomavirus particles. J Virol 61(11):3596–3601

    PubMed  CAS  PubMed Central  Google Scholar 

  62. Buck CB et al (2008) Arrangement of L2 within the papillomavirus capsid. J Virol 82(11):5190–5197

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Roden RB et al (1996) In vitro generation and type-specific neutralization of a human papillomavirus type 16 virion pseudotype. J Virol 70(9):5875–5883

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Volpers C et al (1994) Assembly of the major and the minor capsid protein of human papillomavirus type 33 into virus-like particles and tubular structures in insect cells. Virology 200(2):504–512

    Article  PubMed  CAS  Google Scholar 

  65. Rippe RA, Meinke WJ (1989) Identification and characterization of the BPV-2L2 protein. Virology 171(1):298–301

    Article  PubMed  CAS  Google Scholar 

  66. Fligge C et al (2001) DNA-induced structural changes in the papillomavirus capsid. J Virol 75(16):7727–7731

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Fay A et al (2004) The positively charged termini of L2 minor capsid protein required for bovine papillomavirus infection function separately in nuclear import and DNA binding. J Virol 78(24):13447–13454

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Bordeaux J et al (2006) The l2 minor capsid protein of low-risk human papillomavirus type 11 interacts with host nuclear import receptors and viral DNA. J Virol 80(16):8259–8262

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Gornemann J et al (2002) Interaction of human papillomavirus type 16L2 with cellular proteins: identification of novel nuclear body-associated proteins. Virology 303(1):69–78

    Article  PubMed  CAS  Google Scholar 

  70. Kamper N et al (2006) A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes. J Virol 80(2):759–768

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kawana K et al (1998) A surface immunodeterminant of human papillomavirus type 16 minor capsid protein L2. Virology 245(2):353–359

    Article  PubMed  CAS  Google Scholar 

  72. Kondo K et al (2007) Neutralization of HPV16, 18, 31, and 58 pseudovirions with antisera induced by immunizing rabbits with synthetic peptides representing segments of the HPV16 minor capsid protein L2 surface region. Virology 358(2):266–272

    Article  PubMed  CAS  Google Scholar 

  73. Alphs HH et al (2008) Protection against heterologous human papillomavirus challenge by a synthetic lipopeptide vaccine containing a broadly cross-neutralizing epitope of L2. Proc Natl Acad Sci U S A 105(15):5850–5855

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Day PM et al (2007) Neutralization of human papillomavirus with monoclonal antibodies reveals different mechanisms of inhibition. J Virol 81(16):8784–8792

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Campos SK, Ozbun MA (2009) Two highly conserved cysteine residues in HPV16 L2 form an intramolecular disulfide bond and are critical for infectivity in human keratinocytes. PLoS One 4(2):e4463

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gambhira R et al (2009) Role of L2 cysteines in papillomavirus infection and neutralization. Virol J 6:176

    Article  PubMed  PubMed Central  Google Scholar 

  77. Conway MJ et al (2011) Cross-neutralization potential of native human papillomavirus N-terminal L2 epitopes. PLoS One 6(2):e16405

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Casini GL et al (2004) In vitro papillomavirus capsid assembly analyzed by light scattering. Virology 325(2):320–327

    Article  PubMed  CAS  Google Scholar 

  79. Nieto K et al (2012) Development of AAVLP(HPV16/31L2) particles as broadly protective HPV vaccine candidate. PLoS One 7(6):e39741

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Meyers C et al (2002) Infectious virions produced from a human papillomavirus type 18/16 genomic DNA chimera. J Virol 76(10):4723–4733

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Meyers’ laboratory for many helpful discussions. This work was supported by grant RO1 AI 057988 (C.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig Meyers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ryndock, E.J., Biryukov, J., Meyers, C. (2015). Replication of Human Papillomavirus in Culture. In: Keppler, D., Lin, A. (eds) Cervical Cancer. Methods in Molecular Biology, vol 1249. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2013-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2013-6_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2012-9

  • Online ISBN: 978-1-4939-2013-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics