Abstract
Many of the highly pathogenic viruses including influenza virus, HIV and others of world wide epidemiological importance are enveloped and possess a membrane around the nucleocapsid containing the viral genome. Viral membrane is required to protect the viral genome and provide important functions for attachment, morphogenesis and transmission. Viral membrane is essentially composed of lipids and proteins. While the proteins on the viral envelope are almost exclusively virally encoded, lipids, on the other hand, are all of host origin and recruited from host membrane. However, lipids on the viral membrane are not incorporated randomly and do not represent average lipid composition of the host membrane. Recent studies support that specific lipid microdomains such as lipid rafts play critical roles in many aspects of the virus infectious cycle including attachment, entry, uncoating, protein transport and sorting as well as viral morphogenesis and budding. Lipid microdomains aid in bringing and concentrating viral components to the budding site. Similarly, specific viral protein plays an important role in organizing lipid microdomains in and around the assembly and budding site of the virus. This review deals with the specific role of lipid microdomains in different aspects of the virus life cycle and the role of specific viral proteins in organizing the lipid microdomains.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Abbreviations
- AFM:
-
atomic force microscopy
- AIDS:
-
acquired immune deficiency syndrome
- ALV:
-
nontransforming avian leukosis virus
- ASV:
-
avian sarcoma virus
- BCR:
-
B cell antigen receptor
- BHK:
-
cell, baby hamster kidney cell
- CD:
-
cyclodextrin
- CEC:
-
chick embryo cells
- CIV:
-
Chilo Iridescent virus
- CLSM:
-
confocal laser scanning microscopy
- CMV:
-
cytomegalovirus
- CoV:
-
coronavirus
- CT:
-
cytoplasmic tail
- DIG:
-
detergent insoluble GSL-enriched domain
- DRM:
-
detergent resistant membranes
- EAV:
-
equine arteritis virus
- EBOV:
-
Ebola virus
- EBV:
-
Epstein-Barr virus
- ER:
-
endoplasmic reticulum
- FRT:
-
Fisher rat thyroid cells
- FPV:
-
fowl plague virus
- FRET:
-
fluorescence energy transfer
- Gal Cer:
-
galactosyl ceramide
- GEM:
-
GSL-enriched membrane
- GIcT-1:
-
glycosyltransferase
- GSL:
-
glycosphingolipid
- HA:
-
hemagglutinin
- HaK:
-
hamster kidney cells
- Hat− :
-
cytoplasmic tail minus HA
- HBV:
-
hepatitis B virus
- HCV :
-
hepatitis C virus
- HIV:
-
human immunodeficiency virus
- HSV:
-
herpes simplex virus
- IC:
-
intermediate pre-Golgi compartment
- I domain:
-
interacting domain
- l c :
-
liquid crystalline phase
- l d :
-
liquid disordered phase
- l o :
-
liquid ordered phase
- LBPA:
-
lysobisphosphatidic acid
- L domain:
-
late domain
- M1:
-
matrix protein of influenza virus
- MAD:
-
membrane attachment domain
- MBGV:
-
Marburg virus
- MDCK cell:
-
MadinDarby canine kidney cell
- MHC :
-
major histocompatibility complex
- MHV:
-
mouse hepatitis virus
- M-PMV:
-
Mason-Pfizer monkey virus
- MV:
-
Measles virus
- NA:
-
neuraminidase
- NDV:
-
Newcastle disease virus
- PC:
-
phosphatidylcholine
- PE:
-
phosphatidylethanolamine
- PLD2:
-
phospholipase D2
- RSV:
-
respiratory syncytial virus
- SFV:
-
Semliki Forest virus
- SIN:
-
Sindbis virus
- SNOM:
-
scanning near field optical microscopy
- SV:
-
Sendai virus
- SV5:
-
Sendai virus
- SV40:
-
Simian virus 40
- TCR:
-
T cell antigen receptor
- TGN:
-
trans Golgi network
- TIM:
-
Triton-insoluble membrane
- TM:
-
trans-membrane
- TMD:
-
transmembrane domain
- TR:
-
transfection receptor
- TX-100:
-
Triton X-100
- VEE:
-
Venezuelan equine encephalitis virus
- VLP:
-
virus like particle
- VSV:
-
vesicular stomatitis virus
- WT:
-
wild type.
References
Alt Slimane, T. and Hoekstra, D. (2002) Sphingolipid trafficking and protein sorting in epithelial cells. FEBS Lett. 529: 54–59.
Alfsen, A., Iniguez, P., Bouguyon, E. and Bomsel, M. (2001) Secretory IgA specific for a conserved epitope on gp41 envelope glycoprotein inhibits epithelial transcytosis of HIV-1. J. Immunol. 166: 6257–6265.
Ali, A., Avalos, R.T., Ponimaskin, E. and Nayak, D.P. (2000) Influenza virus assembly: effect of influenza virus glycoproteins on the membrane association of M1 protein. J. Virol. 74: 8709–8719.
Ali, A. and Nayak, D.P. (2000) Assembly of Sendai virus: M protein interacts with F and HN proteins and with the cytoplasmic tail and transmembrane domain of F protein. Virology 276: 289–303.
Aloia, R.C., Tian, H. and Jensen, F.C. (1993) Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc. Natl. Acad. Sci. USA 90: 5181–5185.
Alonso, M.A. and Milian, J. (2001) The role of lipid rafts in signalling and membrane trafficking in T lymphocytes. J. Cell Sci. 114: 3957–3965.
Aman, M.J., Tosello-Trampont, A.-C. and Ravichandran, K. (2001) FcyRIIB1/SHIP-mediated inhibitory signaling in B cells involves lipid rafts. J. Biol. Chem. 276: 46371–46378.
Balange-Orange, N. and Devauchelle, G. (1982) Lipid composition of an Iridescent virus type 6 (CIV). Arch. Virol. 73: 363–367.
Barman, S. and Nayak, D.P. (2000) Analysis of the transmembrane domain of influenza virus neuraminidase, a type II transmembrane glycoprotein, for apical sorting and raft association. J. Virol. 74: 6538–6545.
Barman, S., Ali, A., Hui, E.K.-W, Adhikary, L. and Nayak, D.P. (2001) Transport of viral proteins to the apical membranes and interaction of matrix protein with glycoproteins in the assembly of influenza viruses. Virus. Res. 77: 61–69.
Barman, S., Adhikary, L., Kawaoka, Y. and Nayak, D.P. (2003) Influenza A virus hemagglutinin containing basolateral localization signal does not alter the apical budding of a recombinant influenza A virus in polarized MDCK cells. Virology 305: 138–152.
Bastiani, L., Laal, S., Kim, M. and Zolla-Pazner, S. (1997) Host cell-dependent alterations in envelope components of human immunodeficiency virus type 1 virions. J. Virol. 71: 3444–3450.
Bavari, S., Bosio, C.M., Wiegand, E., Ruthel, G., Will, A.B., Geisbert, T.W., Hevey, M., Schmaljohn, C., Schmaljohn, A. and Aman, M.J. (2002) Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J. Exp. Med. 195: 593–602.
Blau, D.M. and Compans, R.W. (1995) Entry and release of measles virus are polarized in epithelial cells. Virology 210: 91–99.
Bourmakina, S.V. and Garcia-Sastre, A. (2003) Reverse genetics studies on the filamentous morphology of influenza A virus. J. Gen. Virol. 84: 517–527.
Brewer, G.J. (1979) In vivo assembly of a biological membrane of defined size, shape, and lipid composition. J. Virol. 30: 875–882.
Brewer, C.B. and Roth, M.G. (1991) A single amino acid change in the cytoplasmic domain alters the polarized delivery of influenza virus hemagglutinin. J. Cell Biol. 114: 413–421.
Briggs, J.A.G., Wilk, T. and Fuller, S.D. (2003) Do lipid rafts mediate virus assembly and pseudotyping? J. Gen. Virol. 84: 757–768.
Brown, D.A. and London, E. (1998a) Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111–136.
Brown, D.A. and London, E. (1998b) Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164, 103–114.
Brown, D.A., Crise, B. and Rose, J.K. (1989) Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells. Science 245: 1499–1501.
Brown, G., Aitken, J., Rixon, H.W. and Sugrue, R.J. (2000a) Caveolin-1 is incorporated into mature respiratory syncytial virus particles during virus assembly on the surface of virus-infected cells. J. Gen. Virol. 83: 611–621.
Brown, G., Rixon, H.W. and Sugrue, R.J. (2002b) Respiratory syncytial virus assembly occurs in GM 1-rich regions of the host-cell membrane and alters the cellular distribution of tyrosine phosphorylated caveolin-1. J. Gen. Virol. 83: 1841–1850.
Cadd, T.L., Skoging, U., and Liljestrom, P. (1997) Budding of enveloped viruses from the plasma membrane. Bioessays 19: 993–1000.
Campbell, S.M., Crowe, S.M. and Mak, J. (2001) Lipid rafts and HIV-1: from viral entry to assembly of progeny virions. J. Clin. Virol. 22: 217–227.
Chatterjee, P.K., Eng, C.H. and Kielian, M. (2002) Novel mutations that control the sphingolipid and cholesterol dependence of the Semliki Forest virus fusion protein. J. Virol. 76: 12712–12722.
Chazal, N. and Gerlier, D. (2003) Virus entry, assembly, budding, and membrane rafts. Microbiol. Mol. Biol. Rev. 67: 226–237.
Cheng, H., Hoxie, J. and Parks, W.P. (1999) The conserved core of human immunodeficiency virus type 1 Nef is essential for association with Lck and for enhanced viral replication in T-lymphocytes. Virology 264: 5–15.
Cherukuri, A., Dykstra, M. and Pierce, S.K. (2001) Floating the raft hypothesis: lipid rafts play a role in immune cell activation. Immunity 14: 657–660.
Cimarelli, A. and Darlix, J.-L. (2002) Assembling the human immunodeficiency virus type 1. Cell. Mol. Life Sci. 59: 1166–1184.
Collette, Y., Arold, S., Picard, C., Janvier, K., Benichou, S., Benarous, R., Olive, D. and Dumas, C. (2000) 11IV-2 and SW Nef proteins target different Src family SH3 domains than does HIV-1 Nef because of a triple amino acid substitution. J. Biol. Chem. 275: 4171–4176.
Compans, R.W. (1995) Virus entry and release in polarized epithelial cells. Curr. Top. Microbio. Immunol. 202: 209–219.
Czarny, M., Lavie, Y., Fiucci, G. and Liscovitch, M. (1999) Localization of phospholipase D in detergent-insoluble, caveolin-rich membrane domains: modulation by caveolin-1 expression and caveolin-182–101. J. Biol. Chem. 274: 2717–2724.
Damjanovich, S., Matyus, L., Damjanovich, L., Bene, L., Jenei, A., Matkó, J., Gaspar, Jr., R. and Szöllösi, J. (2002) Does mosaicism of the plasma membrane at molecular and high hierarchical levels in human lymphocytes carry information on the immediate history of cells? Immunol. Lett. 82: 93–99.
Danielsen, E.M. (1995) Involvement of detergent-insoluble complexes in the intracellular transport of intestinal brush border enzymes. Biochemistry 34: 1596–1605.
Danielsen, E.M. and van Deurs, B. (1995) A transferrin-like GPI-linked iron-binding protein in detergent-insoluble noncaveolar microdomains at the apical surface of fetal intestinal epithelial cells. J. Cell Biol. 131: 939–950.
David A.E. (1971) Lipid composition of Sindbis virus. Virology 46: 711–720.
Demirov, D.G., Ono, A., Orenstein, J.M. and Freed, E.O. (2002) Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc. Natl. Acad. Sci. USA 99: 955–960.
Deschambeault, J., Lalonde, J.P., Cervantes-Acosta, G., Lodge, R., Cohen, E.A. and Lemay, G. (1999) Polarized human immunodeficiency virus budding in lymphocytes involves a tyrosine-based signal and favors cell-to-cell viral transmission. J. Virol. 73, 5010–5017.
Dimitrov, D.S. (2000) Cell biology of virus entry. Cell 101: 697–702.
Drevot, P., Langlet, C., Guo, X.J., Bernard, A.M., Colard, O., Chauvin, J.P., Lasserre, R. and He, H.T. (2002) TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J. 21: 1899–1908.
Farsad, K. and De Camilli, P. (2003) Lipids in endocytic membrane transport and sorting. Curr. Opin. Cell Biol. 15: 372-Freed, E.O. (2002) Viral late domain. J. Virol. 76: 4679–4687.
Galbiati, E, Razani, B. and Lisanti, M.P. (2001) Emerging themes in lipid rafts and caveolae. Cell 106: 403–411.
Garbutt, M., Chan, H. and Hobman, T.C. (1999) Secretion of rubella virions and virus-like particles in cultured epithelial cells. Virology 261: 340–346.
Garoff, H., Hewson, R. and Opstelten, D.-J.E. (1998) Virus maturation by budding. Microbiol. Mol. Biol. Rev. 62: 1171–1190.
Gurus, J.E., von Schwedler, U.K., Pornillos, O.W., Morham, S.G., Zavitz, K.H., Wang, H.E., Wettstein, D.A., Stray, K.M., Côte, M., Rich, R.L., Mysxka, D.G. and Sundquist, W.I. (2001) Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107: 55–65.
Goila-Gaur, R., Demirov, D.G., Orenstein, J.M., Ono, A. and Freed, E.O. (2003) Defects in human immunodeficiency virus budding and endosomal sorting induced by TSG101 overexpression. J. Virol. 77: 6507–6519.
Graham, D.R.M., Chertova, E., Hilburn, J.M., Arthur, L.O. and Hildreth, J.E.K. (2003) Cholesterol depletion of human immunodeficiency virus type 1 and simian immunodeficiency virus with b-cyclodextrin inactivates and permeabilizes the virions: evidence for virion-associated lipid rafts. J. Virol. 77: 8237–8248.
Gujuluva, C.N., Kundu, A., Murti, K.G. and Nayak, D.P. (1994) Abortive replication of influenza virus A/WSN/33 in HeLa cells: defective viral entry and budding processes. Virology 204: 491–505.
Guo, B., Kato, R.M., Garcia-Lloret, M., Wahl, M.I. and Rawlings, D.J. (2000) Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling cornplex. Immunity 13: 243–253.
Harder, T. (2003) Formation of functional cell membrane domains: the interplay of lipid-and protein-mediated interactions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358: 863–868.
Harder, T. and Simons, K. (1999) Clusters of glycolipid and glycosylphosphatidylinositolanchored proteins in lymphoid cells: accumulation of actin regulated by local tyrosine phosphorylation. Eur. J. Immunol. 29: 556–562.
Harder, T, Scheiffele, P., Verkade, P. and Simons, K. (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141: 929–942.
Hermida-Matsumoto, L. and Resh, M.D. (2000) Localization of human immunodeficiency virus type 1 Gag and Env at the plasma membrane by confocal imaging. J. Viral. 74, 8670–8679.
Heydrick, F.P., Corner, J.F. and Wachter, R.F. (1971) Phospholipid composition of Venezuelan equine encephalitis virus. J. Virol. 7: 642–645.
Hiipakka, M. and Saksela, K. (2002) Capacity of simian immunodeficiency virus strain mac Nef for high-affinity Src homology 3 (SH3) binding revealed by ligand-tailored SH3 domains. J. Gen. Virol. 83: 3147–3152.
Hobman, T.C. (1993) Targeting of viral glycoproteins to the Golgi complex. Trends Microbiol. 1: 124–130.
Hoessli, D.C., Ilangumaran, S, Soltermann, A., Robinson, P.J., Borisch, B. and Nasir-UdDin. (2001) Signaling through sphingolipid microdomains of the plasma membrane: the concept of signaling platform. Glycoconjugate J. 17: 191–197.
Holm, K., Weclewicz, K., Hewson, R. and Suomalainen, M. (2003) Human immunodeficiency virus type 1 assembly and lipid rafts: Pr55 associates with membrane domains that are largely resistant to Brij98 but sensitive to Triton X-100. J. Virol. 77: 4805–4817.
Holopainen, J.M., Angelora, M.I. and Kinnunen, P.K. (2000) Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys. J. 78: 830–838.
Holowka, D., Sheets, E.D. and Baird, B. (2000) Interactions between and lipid raft components are regulated by the actin cytoskeleton. J. Cell Sci. 113: 1009–1019.
Hug, P., Lin, H.-M.J., Korte, T., Xiaodong, X., Dimitrov, D.S., Wang, J.M., Puri, A. and Blumenthal, R. (2000) Glycosphingolipids promote entry of a broad range of human immunodeficiency virus type 1 isolates into cell lines expressing CD4, CXCR4, and/or CCR5. J. Virol. 74: 6377–6385.
Hughey, P.G., Compans, R.W., Zebedee, S.L. and Lamb, R.A. (1992) Expression of the influenza A virus M2 protein is restricted to apical surfaces of polarized epithelial cells. J. Virol. 66: 5542–5552.
Hui, E.K.-W. and Nayak, D.P. (2001) Role of ATP in influenza virus budding. Virology 290: 329–341.
Hui, E.K.-W and Nayak, D.P. (2002) Role of G protein and protein kinase signalling in influenza virus budding in MDCK cells. J. Gen. Virol. 83: 3055–3066.
Hui, E.K.-W., Barman, S., Yang, T.Y. and Nayak, D.P. (2003) Basic residues of the helix six domain of influenza virus M1 involved in nuclear translocation of Ml can be replaced by PTAP and YPDL late assembly domain motifs. J. Virol. 77: 7078–7092.
Ikonen, E. (2001) Roles of lipid rafts in membrane transport. Curr. Opin. Cell Biol. 13: 470–477.
Janes, P.W., Ley, S.C. and Magee, A.I. (1999) Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J. Cell Biol. 147: 447–461.
Katagiri, Y.U., Liyokawa, N. and Fujimoto, J. (2001) A role for lipid rafts in immune cell signaling. Microbiol. Immunol. 45: 1–8.
Kate, M., Allison, A.C., Tyrrell, D.A.J. and James, A.T. (1961) Lipids of influenza virus and their relation to those of the host cell. Biochim. Biophys. Acta 52: 455–466.
Keller, P. and Simons, K. (1998) Cholesterol is required for surface transport of influenza virus hemagglutinin. J. Cell Biol. 140: 1357–1367.
Khanna, K.V., Whaley, K.J., Zeitlin, L., Moench, T.R., Mehrazar, K., Cone, R.A., Liao, Z., Hildreth, J.E.K., Hoen, T.E., Shultz, L. and Markham, R.B. (2002) Vaginal transmission of cell-associated HIV-1 in the mouse is blocked by a topical, membrane-modifying agent. J. Clin. Invest. 109: 205–211.
Kielian, M.C. and Helenius, A. (1984) Role of cholesterol in fusion of Semliki Forest virus with membranes. J. Virol. 52: 281–283.
Klenk, H.-D. and Choppin, P.W. (1970) Plasma membrane lipids and parainfluenza virus assembly. Virology 40: 939–947.
Kobayashi, T. and Hirabayashi, Y. (2001) Lipid membrane domains in cell surface and vacuolar systems. Glycoconjugate J. 17: 163–171.
Kundu, A., Avalos, R.T., Sanderson, C.M. and Nayak, D.P. (1996) Transmembrane domain of influenza virus neuraminidase, a type II protein, possesses an apical sorting signal in polarized MDCK cells. J. Virol. 70, 6508–6515.
Kusumi, A. and Sako, Y. (1996) Cell surface organization by the membrane skeleton. Curr. Opin. Cell Biol. 8: 566–574.
Lafont, E, Lecat, S., Verkade, P. and Simons, K. (1998) Annexin XIIb associates with lipid microdomains to function in apical delivery. J. Cell Biol. 142: 1413–1427.
Langlet, C., Bernard, A.M., Drevot, P. and He, H.T. (2000) Membrane rafts and signaling by the multichain immune recognition receptors. Curr. Opin. Immunol. 12: 250–255.
Li, M., Yang, C., Tong, S., Weidmann, A. and Compans, R.W. (2002) Palmitoylation of the murine leukemia virus envelope protein is critical for lipid raft association and surface expression. J. Virol. 76: 11845–11852.
Li, S., Okamoto, T., Chun, M., Sargiacomo, M., Casanova, J.E., Hansen, S.H., Nishimoto, I. And Lisanti, M.P. (1995) Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J. Biol. Chem. 270: 15693–15701.
Lin, S., Naim, H.Y., Rodriguez, A.C. and Roth, M. G. (1998) Mutations in the middle of the transmembrane domain reverse the polarity of transport of the influenza virus hemagglutinin in MDCK epithelial cells. J. Cell Biol. 142: 51–57.
Lindwasser, O.W. and Resh, M.D. (2001) Multimerization of human immunodeficiency virus type 1 Gag promotes its localization to barges, raft-like membrane microdomains. J. Virol. 75: 7913–7924.
Lodge, R., Gottlinger, H., Gabuzda, D., Cohen, E.A. and Lemay, G. (1994). The intracytoplasmic domain of gp41 mediates polarized budding of human immunodeficiency virus type 1 in MDCK cells. J. Virol. 68: 4857–4861.
Lodge, R., Lalonde, J.P., Lemay, G. and Cohen, E. A. (1997) The membrane-proximal intra-cytoplasmic tyrosine residue of HIV-1 envelope glycoprotein is critical for basolateral targeting of viral budding in MDCK cells. EMBO J. 16, 695–705.
Lu, Y.E., Cassese, T. and Kielian, M. (1999) The cholesterol requirement for Sindbis virus entry and exit and characterization of a spike protein region involved in cholesterol dependence. J. Virol. 73: 4272–4278.
Luan, P., Yang, L. and Glaser, M. (1995) Formation of membrane domains created during the budding of vesicular stomatitis virus: a model for selective lipid and protein sorting in biological membranes. Biochemistry 34: 9874–9883.
Luban, J. (2001) HIV-1 and Ebola virus: the getaway driver nabbed. Nat. Med. 7: 1278–1280. Maisner, A., Klenk, H., and Herrler, G. (1998) Polarized budding of measles virus is not determined by viral surface glycoproteins. J. Virol. 72: 5276–5278.
Malvoisin, E. and Wild, E (1990) Effect of drugs which inhibit cholesterol synthesis on syncytia formation in vero cells infected with measles virus. Biochim. Biophys. Acta 1042: 359–364.
Manié, S.N., Debreyne, S., Vincent, S. and Gerlier, D. (2000) Measles virus structural components are enriched into lipid raft microdomains: a potential cellular location for virus assembly. J. Virol. 74: 305–311.
Martin-Belmonte, E, Puertollano, R., Milian, J. and Alonso, M.A. (2000) The MAL proteolipid is necessary for the overall apical delivery of membrane proteins in the polarized epithelial Madin-Darby canine kidney and fischer rat thyroid cell lines. Mol. Biol. Cell 11: 2033–2045.
Miceli, M.C., Moran, M., Chung, C.D., Patel, VP., Low, T. and Zinnznti, W. (2001) Co-stimulation and counter-stimulation: lipid raft clustering controls TCR signaling and functional outcomes. Semin. Immunol. 13: 115–128.
Mora, R., Rodriguez-Boulan, E., Palese, P. and Garcia-Sastre, A. (2002) Apical budding of a recombinant influenza A virus expressing a hemagglutinin protein with a basolateral localization signal. J. Virol. 76, 3544–3553.
Müller, G. (2002) Dynamics of plasma membrane microdomains and cross-talk to the insulin signalling cascade. FEBS Lett. 531: 81–87.
Nabi, I.R. and Le, P.U. (2003) Caveolae/raft-dependent endocytosis. J. Cell Biol. 161: 673–677.
Naim, H. Y, Ehler, E., and Billeter, M.A. (2000) Measles virus matrix protein specifies api- cal virus release and glycoprotein sorting in epithelial cells. EMBO J. 19, 3576–3585.
Narayan, S., Barnard, R.J.O. and Young, J.A.T. (2003) Two retroviral entry pathways distinguished by lipid raft association of the viral receptor and differences in viral infectivity. J. Virol. 77: 1977–1983.
Nayak, D.P. and Barman, S. (2002) Role of lipid rafts in virus assembly and budding. Adv. Virus Res. 58: 1–28.
Nayak, D.P. and Hui, E.K.-W (2002) Assembly and morphogenesis of influenza virus. Recent Res. Dev. Virol. 4: 35–54.
Nguyen, D.H. and Hildreth, J.E.K. (2000) Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J. Virol. 74: 3264–3272.
Nieva, J.L., Bron, R., Corver, J. and Wilschut, J. (1994) Membrane fusion of Semliki Forest virus requires sphingolipids in the target membrane. EMBO J. 13: 2797–2804.
Ono, A. and Freed, E.O. (2001) Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc. Natl. Acad. Sci. USA 98: 13925–13990.
Owens, R.J., Dubay, J.W., Hunter, E. and Compans, R.W. (1991) Human immunodeficiency virus envelope protein determines the site of virus release in polarized epithelial cells. Proc. Natl. Acad. Sci. USA 88: 3987–3991.
Pelkmans, L. and Helenius, A. (2003) Insider information: what viruses tell us about endocytosis. Curr. Opin. Cell Biol. 15: 414–422.
Perez, O.D. and Nolan, G.P. (2001) Resistance is futile: assimilation of cellular machinery by HIV-1. Immunity 15: 687–690.
Phalen, T. and Kielian, M. (1991) Cholesterol is required for infection by Semliki Forest virus. J. Cell Biol. 112: 615–623.
Pickl, W.F., Pimentel-MuiÃïos, F.X. and Seed, B. (2001) Lipid rafts and pseudotyping. J. Virol. 75: 7175–7183.
Pralle, A., Keller, P., Florin, E.-L., Simons, K. and Hörber, J.K.H. (2000) Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148: 997–1008.
Puertollano, R., Martin-Belmonte, E, Milian, J., de Marco, M.C., Albar, J.P., Kremer, L. and Alonso, M.A. (1999) The MAL proteolipid is necessary for normal apical transport and accurate sorting of the influenza virus hemagglutinin in Madin-Darby canine kidney cells. J. Cell Biol. 145: 141–151.
Quigley, J.P., Rifkin, D.B. and Reich, E. (1971) Phospholipid composition of Rous sarcoma virus, host cell membranes and other enveloped RNA viruses. Virology 46: 106–116.
Renkonen, O., Kääräinen, L., Simons, K. and Gahmberg, C.G. (1971) The lipid class composition of Semliki Forest virus and of plasma membranes of the host cells. Virology 46: 318–326.
Roberts, P.C. and Compans, R.W. (1998) Host cell dependence of viral morphology. Proc. Natl. Acad. Sci. USA 95: 5746–5751.
Roberts, P.C., Lamb, R.A. and Compans, R.W. (1998) The Ml and M2 proteins of influenza A virus are important determinants in filamentous particle formation. Virology 240: 127–137.
Roper, K., Corbeil, D. and Huttner, W.B. (2000) Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat. Cell Biol. 2: 582–592.
Rousso, I., Mixon, M.B., Chen, B.K. and Kim, P.S. (2000) Palmitoylation of the HIV-1 envelope glycoprotein is critical for viral infectivity. Proc. Natl. Acad. Sci. USA 97: 13523–13525.
Salzwedel, K., West Jr., J.T., Mulligan, M.J. and Hunter, E. (1998) Retention of the human immunodeficiency virus type 1 envelope glycoprotein in the endoplasmic reticulum does not redirect virus assembly from the plasma membrane. J. Virol. 72: 7523–7531.
Samsonov, A.V., Chatterjee, P.K., Razinkov, V.I., Eng, C.H., Kielian, M. and Cohen, F.S. (2002) Effects of membrane potential and sphingolipid structures on fusion of Semliki Forest virus. J. Virol. 76: 12691–12702.
Sanchez, V, Greis, K.D., Sztul, E. and Britt, W.J. (2000) Accumulation of virion tegument and envelope proteins in a stable cytoplasmic compartment during human cytomegalovirus replication: characterization of a potential site of virus assembly. J. Virol. 74, 975–986.
Sandefur, S., Smith, R.M., Varthakavi, V. and Spearman, P. (2000) Mapping and characterization of the N-terminal I domain of human immunodeficiency virus type 1 Pr55Gag J. Virol. 74: 7238–7249.
Sanger, C., Muhlberger, E., Ryabchikova, E., Kolesnikova, L., Klenk, H.D. and Becker, S. (2001) Sorting of marburg virus surface protein and virus release take place at opposite surfaces of infected polarized epithelial cells. J. Virol. 75: 1274–1283.
Scheiffele, P., Roth, M.G. and Simon, K. (1997) Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J. 16: 5501–5508.
Scheiffele, P., Verkade, P., Fra, A.M., Virta, H., Simons, K. and Ikonen, E. (1998) Caveolin-1 and -2 in the exocytic pathway of MDCK cells. J. Cell Biol. 140: 795–806.
Scheiffele, P., Rietveld, A., Wilk, T. and Simons, K. (1999) Influenza viruses select ordered lipid domains during budding from the plasma membrane. J. Biol. Chem. 274: 2038–2044.
Schnitzer, J.E., Oh, P., Pinney, E. and Allard, J. (1994) Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell Biol. 127: 1217–1232.
Schütz, G.J., Kada, G., Pastushenko, V.P. and Schindler, H. (2000) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 19: 892–901.
Sharma, P., Sabharanjak, S. and Mayor, S. (2002) Endocytosis of lipid rafts: an identity crisis. Semin. Cell Dev. Biol. 13: 205–214.
Sheets, E.D., Lee, G.M., Simson, R. and Jacobson, K. (1997) Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane. Biochemistry 36: 12449–12458.
Shi, S.T., Lee, K.J., Aizaki, H., Hwang, S.B. and Lai, M.M. (2003) Hepatitis C virus RNA replication occurs on a detergent-resistant membrane that cofractionate with caveolin-2. J. Virol. 77: 4160–4168.
Simons, K. and Ikonen, E. (1997) Functional rafts in cell membranes. Nature 387: 569–572.
Simons, K. and Toomre, D. (2000) Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1: 31–39
Simpson-Holley, M., Ellis, D., Fisher, D., Elton, D., McCauley, J. and Digard, P. (2002) A functional link between the actin cytoskeleton and lipid rafts during budding of filamentous influenza virions. Virology 301: 212–225.
Skibbens, J.E., Roth, M.G. and Matlin, K.S. (1989) Differential extractability of influenza virus hemagglutinin during intracellular transport in polarized epithelial cells and non-polar fibroblasts. J. Cell Biol. 108: 821–832.
Slimane, T.A. and Hoekstra, D. (2002) Sphingolipid trafficking and protein sorting in epithelial cells. FEBS Lett. 529: 54–59.
Song, K.S., Shengwen, L., Okamoto, T., Quilliam, L.A., Sargiacomo, M. and Lisanti, M.P. (1996) Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains: detergent-free purification of caveolae microdomains. J. Biol. Chem. 271: 9690–9697.
Stang, E., Kartenbeck, J. and Parton, R.G. (1997) Major histocompatibility complex class I molecules mediate association of SV40 with caveolae. Mol. Biol. Cell 8: 47–57.
Suomalainen, M. (2002) Lipid rafts and assembly of enveloped viruses. Traffic 3: 705–709.
Tatulian, S.A. and Tamm, L.K. (2000) Secondary structure, orientation, o1igomerization, and lipid interactions of the transmembrane domain of influenza hemagglutinin. Biochemistry 39: 496–507.
van der Goot, F.G. and Harder, T. (2001) Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Seminars Immun1. 13: 89–97.
van Genderen, I.L., Godeke, G.-J., Rottier, P.J.M. and van Meer, G. (1995) The phospholipid composition of enveloped viruses depends on the intracellular membrane through which they bud. Biochem. Soc. Trans. 23: 523–526.
van Meer, G. and Simons, K. (1986) The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J. 5: 1455–1464.
Veit, M., Herder, G., Schmidt, M.F., Rott, R. and Klenk, H.D. (1990) The hemagglutinating glycoproteins of influenza B and C viruses are acylated with different fatty acids. Virology 177: 807–811.
Veit, M., Klenk, H.D., Kendal, A. and Rott, R. (1991) The M2 protein of influenza A virus is acylated. J. Gen. Virol. 72: 1461–1465.
Vincent, S., Gerlier, D. and Manié, S.N. (2000) Measles virus assembly within membrane rafts. J. Virol. 74: 9911–9915.
Vogt, A.B., Spindeldreher, S. and Kropshofer, H. (2002) Clustering of MHC-peptide complexes prior to their engagement in the immunological synapse: lipid raft and tetraspan microdomains. Immunol. Rev. 189: 136–151.
Waarts, B.-L., Bittman, R. and Wilschut, J. (2002) Sphingolipid and cholesterol dependence of alphavirus membrane fusion. J. Biol. Chem. 277: 38141–38147.
Wang, J.K., Kiyokawa, E., Verdin, E. and Trono, D. (2000) The Nef protein of HIV-1 associates with rafts and primes T cells for activation. Proc. Natl. Acad. Sci. USA 97: 394–399.
Zhang, J., Pekosz, A. and Lamb, R.A. (2000) Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. J. Virol. 74: 4634–4644.
Zheng, X., Lu, D. and Sadler, J.E. (1999) Apical sorting of bovine enteropeptidase does not involve detergent-resistant association with sphingolipid-cholesterol rafts. J. Biol. Chem. 274: 1596–1605.
Zheng, Y.-H., Plemenitas, A., Linnemann, T., Fackler, O.T. and Peterlin, B.M. (2001) Nef increases infectivity of HIV via lipid rafts. Curr. Biol. 11: 875–879.
Zimmer, G., Zimmer K.-P, Trotz, I. and Herrler, G. (2002) Vesicular somatitis virus glycoprotein does not determine the site of virus release in polarized epithelial cells. J. Virol. 76: 4103–4107.
Zurzolo, C., Polistina, C., Saini, M., Gentile, R., Aloj, L., Migliaccio, G., Bonatti, S. and Nitsch, L. (1992) Opposite polarity of virus budding and of viral envelope glycoprotein distribution in epithelial cells derived from different tissues. J. Cell Biol. 117: 551–564.
Zurzolo, C., van’t Hof, W, van Meer, G. and Rodriguez-Boulan, E. (1994) VIP21/caveolin, glycosphingolipid clusters and the sorting of glycosylphosphatidylinositol-anchored proteins in epithelial cells. EMBO J. 13: 42–53.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer Science+Business Media New York
About this chapter
Cite this chapter
Nayak, D.P., Hui, E.KW. (2004). The Role of Lipid Microdomains in Virus Biology. In: Quinn, P.J. (eds) Membrane Dynamics and Domains. Subcellular Biochemistry, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5806-1_14
Download citation
DOI: https://doi.org/10.1007/978-1-4757-5806-1_14
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4419-3447-5
Online ISBN: 978-1-4757-5806-1
eBook Packages: Springer Book Archive