Skip to main content

Neurogenetic Studies of Ion Channels in Drosophila

  • Chapter
Ion Channels

Part of the book series: Ion Channels ((IC))

  • 113 Accesses

Abstract

The enormous information handling capacity of nervous systems depends on the proper function of a rich variety of neurons and other excitable cells that display distinctive signal processing characteristics. This physiological complexity reflects cellular differences in the expression and regulation of ion channels. Genetic dissection has been successfully applied in elucidation of mechanisms underlying many biological processes in model systems. Drosophila has been a favored organism for such an approach to complex problems in higher organisms, such as function and development of the nervous system (Benzer, 1973; Pak and Pinto, 1976).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Atkinson, N., Robertson, G., and Ganetzky, B., 1991, A structural component of calcium-activated potassium channels encoded by the Drosophila slo locus, Science 253:551–555.

    CAS  PubMed  Google Scholar 

  • Auld, V. J., Goldin, A. L., Krafte, D. S., Marshall, J., Dunn, J. M., Catterall, W. A., Lester, H. A., Davidson, N., and Dunn, R. J., 1988, A rat brain Na+ channel a subunit with novel gating properties, Neuron 1:449–461.

    CAS  PubMed  Google Scholar 

  • Bader, C. R., Bernheim, L., and Bertrand, D., 1985, Sodium-activated potassium current in cultured avian neurons, Nature 317:540–542.

    CAS  PubMed  Google Scholar 

  • Baker, K., and Salkoff, L., 1990, The Drosophila Shaker gene codes for a distinctive K+ current in a subset of neurons, Neuron 2:129–140.

    Google Scholar 

  • Belote, J. M., and Lucchesi, J. C., 1980a, Control of X chromosome transcription by the maleless gene in Drosophila,Nature 285:573–575.

    CAS  Google Scholar 

  • Belote, J. M., and Lucchesi, J. C., 1980b, Male-specific lethal mutations of Drosophila melanogaster, Genetics 96:165–186.

    CAS  Google Scholar 

  • Benzer, S., 1973, Genetic dissection of behavior, Sci. Am. 229:24–37.

    CAS  PubMed  Google Scholar 

  • Budnik, V., Zhong, Y., and Wu, C.-F., 1990, Morphological plasticity of motor axons in Drosophila mutants with altered excitability, J. Neurosci. 10:3754–3768.

    CAS  PubMed  Google Scholar 

  • Byerly, L., and Leung, H.-T., 1988, Ionic currents of Drosophila neurons in embryonic cultures, J. Neurosci. 8:4379–4393.

    CAS  PubMed  Google Scholar 

  • Chung, S., Reinhart, P. H., Martin, B. L., Brautigan, D., and Levitan, I. B., 1991, Protein kinase activity associated with a reconstituted calcium-activated potassium channel, Science 253:560–562.

    CAS  PubMed  Google Scholar 

  • Delgado, R., Hidalgo, P., Diaz, F., Latorre, R., and Labarca, P., 1991, A cyclic AMP-activated K+ channel in Drosophila larval muscle is persistently activated in dunce, Proc. Natl. Acad. Sci. USA 88:557–560.

    CAS  PubMed  Google Scholar 

  • Dryer, S. E., Fujii, J., and Martin, A. R. A., 1989, Na+-activated K+ current in cultured brain stem neurones from chicks, J. Physiol. (London) 410:283–296.

    CAS  Google Scholar 

  • Drysdale, R., Warmke, J., Kreber, R., and Ganetzky, B., 1991, Molecular characterization of eag: a gene affecting potassium channels in Drosophila melanogaster, Genetics 127:497–505.

    CAS  PubMed  Google Scholar 

  • Elkins, T., and Ganetzky, B., 1988, The roles of potassium currents in Drosophila flight muscles, J. Neurosci. 8:428–434.

    CAS  PubMed  Google Scholar 

  • Elkins, T., and Ganetzky, B., 1990, Conduction in the giant nerve fiber pathway in temperature-sensitive paralytic mutants of Drosophila, J. Neurogenet. 6:207–219.

    CAS  PubMed  Google Scholar 

  • Elkins, T., Ganetzky, B., and Wu, C.-F., 1986, A mutation of Drosophila eliminates a calcium-dependent potassium current, Proc. Natl. Acad. Sci. USA 83:8415–8419.

    CAS  PubMed  Google Scholar 

  • Ganetzky, B., 1984, Genetic studies of membrane excitability in Drosophila: Lethal interaction between two temperature-sensitive paralytic mutations, Genetics 108:897–911.

    CAS  PubMed  Google Scholar 

  • Ganetzky, B., 1986, Neurogenetic analysis of Drosophila mutations affecting sodium channels: Synergistic effects on viability and nerve conduction in double mutants involving tip-E, J. Neurogenet. 3:19–31.

    CAS  PubMed  Google Scholar 

  • Ganetzky, B., 1991, Genetic analysis of ion channels in Drosophila, in: Genetic Strategies in Epilepsy Research (Epilepsy Res. Suppl. 4) (V. E. Anderson, W. A. Hauser, I. E. Leppik, J. L. Nochels, and S. S. Rich, eds.), Elsevier Science Publishers, Amsterdam, pp. 241–255.

    Google Scholar 

  • Ganetzky, B., and Wu, C.-F., 1982, Drosophila mutants with opposing effects on nerve excitability: Genetic and spatial interactions in repetitive firing, J. Neurophysiol. 47:501–514.

    CAS  PubMed  Google Scholar 

  • Ganetzky, B., and Wu, C.-F., 1983, Neurogenetic analysis of potassium currents in Drosophila: Synergistic effects on neuromuscular transmission in double mutants, J. Neurogenet. 1:17–28.

    CAS  PubMed  Google Scholar 

  • Ganetzky, B., and Wu, C.-F., 1985, Genes and membrane excitability in Drosophila, Trends Neurosci. 8:322–326.

    Google Scholar 

  • Ganetzky, B., and Wu, C.-F., 1986, Neurogenetics of membrane excitability in Drosophila, Annu. Rev. Genet. 20:13–44.

    CAS  PubMed  Google Scholar 

  • Ganetzky, B., and Wu, C.-F., 1989, Molecular approaches to neurophysiology in Drosophila, in: Molecular Neurobiology (D. M. Glover and D. B. Hanna, eds.), Oxford University Press, Oxford, pp. 9–61.

    Google Scholar 

  • Ganetzky, B., Loughney, K., and Wu, C.-F., 1986, Analysis of mutations affecting sodium channels in Drosophila, Ann. N.Y. Acad. Sci. 479:325–337.

    CAS  PubMed  Google Scholar 

  • Gautam, M., and Tanouye, M. A., 1990, Alteration of potassium channel gating: Molecular analysis of the Drosophila Sh 5 mutation, Neuron 5:67–73.

    CAS  PubMed  Google Scholar 

  • Gho, M., and Ganetzky, B., 1992, Analysis of repolarization of presynaptic motor terminals in Drosophila larvae using potassium channel blocking drugs and mutations, J. Exp. Biol., in press.

    Google Scholar 

  • Gho, M., and Mallart, A., 1986, Two distinct Cat“-activated K” currents in larval muscle fibers of Drosophila melanogaster, Pfluegers Arch. 407:526–533.

    CAS  Google Scholar 

  • Gisselmann, G., Sewing, S., Madsen, B. W., Mallart, A., Angaut-Petit, D., Muller-Holtkamp, F., Ferrus, A., and Pongs, O., 1989, The interference of truncated with normal potassium channel subunits leads to abnormal behavior in the transgenic Drosophila melanogaster, EMBOJ. 8:2359–2364.

    CAS  Google Scholar 

  • Gorczyca, M. G., and Wu, C.-F., 1991, Single channel K+ currents in Drosophila muscle and their pharmacological block, J. Membr. Biol. 121:237–248.

    CAS  PubMed  Google Scholar 

  • Guy, H. R., Durell, S. R., Warmke, J., Drysdale, R., and Ganetzky, B., 1991, Similarities in amino acid sequences in Drosophila eag and cyclic nucleotide-gated channels, Science, 245:730.

    Google Scholar 

  • Hall, J. C., 1982, Genetics of the nervous system in Drosophila, Q. Rev. Biophys. 15:223–479.

    CAS  PubMed  Google Scholar 

  • Hall, J. C., and Kankel, D. R., 1976, Genetics of acetylcholinesterase in Drosophila melanogaster, Genetics 83:517–535.

    CAS  PubMed  Google Scholar 

  • Hartung, K., 1985, Potentiation of a transient outward current by Na’ influx in crayfish neurones, Pfluegers Arch. 404:41–44.

    CAS  Google Scholar 

  • Haugland, F. N., and Wu, C.-F., 1986, Gene-dosage effects on a K+ current in Drosophila, Biophys. J. 49:168a.

    Google Scholar 

  • Haugland, F. N., and Wu, C.-F., 1987, Concommitant alteration of potassium channel gating and pharmacology in a Shaker mutant of Drosophila, Soc. Neurosci. Abstr. 13:530.

    Google Scholar 

  • Haugland, F. N., and Wu, C.-F., 1990, A voltage clamp analysis of gene-dosage effects of the Shaker locus on larval muscle potassium currents in Drosophila, J. Neurosci. 10:1357–1371.

    CAS  PubMed  Google Scholar 

  • Hodgetts, R. B., 1975, The response of dopa decarboxylase activity to variations in gene dosage in Drosophila: A possible location of the structural gene, Genetics 79:45–54.

    CAS  PubMed  Google Scholar 

  • Hodgkin, A. L., and Katz, B., 1949, The effect of temperature on the electrical activity of the giant axon of the squid, J. Physiol. (London) 109:240–249.

    CAS  Google Scholar 

  • Isacoff, E. Y., Jan, Y. N., and Jan, L. Y., 1990, Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes, Nature 345:530–534.

    CAS  PubMed  Google Scholar 

  • Iverson, L. E., and Rudy, B., 1990, The role of the divergent amino and carboxyl domains on the inactivation properties of potassium channels derived from the Shaker gene of Drosophila, J. Neurosci. 10:2903–2916.

    CAS  PubMed  Google Scholar 

  • Iverson, L. E., Tanouye, M. A., Lester, H. A., Davidson, N., and Rudy, B., 1988, A-type potassium channels expressed from Shaker locus cDNA, Proc. Natl. Acad. Sci. USA 85:5723–5727.

    CAS  PubMed  Google Scholar 

  • Jackson, F. R., Wilson, S. D., Strichartz, G. R., and Hall, L. M., 1984, Two types of mutants affecting voltage-sensitive sodium channels in Drosophila melanogaster, Nature 308:189–191.

    CAS  PubMed  Google Scholar 

  • Jackson, F. R., Gitshier, J., Strichartz, G., and Hall, L. M., 1985, Genetic modifications of voltage-sensitive sodium channels in Drosophila: Gene dosage studies for the seizure locus, J. Neurosci. 5:1144–1151.

    CAS  PubMed  Google Scholar 

  • Jackson, F. R., Wilson, S. D., and Hall, L. M., 1986, The tip-E mutation of Drosophila decreases saxitoxin binding and interacts with other mutations affecting nerve membrane excitability, J. Neurogenet. 3:1–17.

    CAS  PubMed  Google Scholar 

  • Jan, L. Y., and Jan, Y. N., 1990, A superfamily of ion channels, Nature 345:672.

    CAS  PubMed  Google Scholar 

  • Jan, Y. N., Jan L. Y., and Dennis, M. J., 1977, Two mutations of synaptic transmission in Drosophila, Proc. R. Soc. London 198:87–108.

    CAS  Google Scholar 

  • Kamb, A., Iverson, L. E., and Tanouye, M. A., 1987, Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel, Cell, 50:405–413.

    CAS  PubMed  Google Scholar 

  • Kamb, A., Tseng-Crank, J., and Tanouye, M. A., 1988, Multiple products of the Drosophila Shaker gene contribute to potassium channel diversity, Neuron 1:421–430.

    CAS  PubMed  Google Scholar 

  • Kaplan, W. D., and Trout, W. E., III, 1969, The behavior of four neurological mutants of Drosophila, Genetics 61:339–409.

    Google Scholar 

  • Kasbekar, D. P., Nelson, J. C., and Hall, L. M., 1987, Enhancer of seizure: A new genetic locus in Drosophila melanogaster defined by interactions with temperature-sensitive paralytic mutations, Genetics 116:423–432.

    CAS  PubMed  Google Scholar 

  • Kauvar, L. M., 1982, Reduced [3H1-tetradotoxin binding in the nap’ paralytic mutant of Drosophila, Mol. Gen. Genet. 187:172–173.

    CAS  PubMed  Google Scholar 

  • Kernan, M. J., Kuroda, M. I., Kreber, R., Baker, B. S., and Ganetzky, B., 1991, nap’, a mutation affecting sodium channel activity in Drosophila, is an allele of mle, a regulator of X chromosome transcription, Cell 66:949–959.

    CAS  PubMed  Google Scholar 

  • Knust, E., Tietze, K., and Campos-Ortega, J. A., 1987, Molecular analysis of the neurogenic locus enhancer of split of Drosophila melanogaster, EMBO J. 6:4113–4123.

    CAS  PubMed  Google Scholar 

  • Komatsu, A., Sun, Y.-A., and Wu, C.-F., 1986, Different types of potassium channels in CNS neurons of Drosophila, Soc. Neurosci. Abstr. 12:1341.

    Google Scholar 

  • Komatsu, A., Singh, S., Rathe, P., and Wu, C.-F., 1990, Mutational and gene-dosage analysis of calcium-activated potassium channels in Drosophila: Correlation of microscopic and macroscopic currents, Neuron 4:313–321.

    CAS  PubMed  Google Scholar 

  • Kretsinger, R. H., 1987, Calcium coordination and the calmodulin fold: Divergent versus convergent evolution, Cold Spring Harbor Symp. Quant. Biol. 52:499–510.

    CAS  PubMed  Google Scholar 

  • Kulkarni, S. J., and Padhye, A., 1982, Temperature-sensitive paralytic mutations on the second and third chromosomes of Drosophila melanogaster, Genet. Res. 40:191–199.

    Google Scholar 

  • Kuroda, M. I., Kernan, M. J., Kreber, R., Ganetzky, B., and Baker, B. S., 1991, The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila, Cell 66:935–947.

    CAS  PubMed  Google Scholar 

  • Lacerda, A. E., Kim, H. S., Ruth, P., Perez-Reyes, E., Flockerzi, V., Hofmann, F., Birnbaumer, L., and Brown, A. M., 1991, Normalization of current kinetics by interaction between the a and ß subunits of the skeletal muscle dihydropyridine-sensitive Cat+ channel, Nature 352:527–530.

    CAS  PubMed  Google Scholar 

  • Levis, R., O’Hare, K., and Rubin, G. M., 1984, Effects of transposable element insertions on RNA encoded by the white gene of Drosophila, Cell 38:471–481.

    CAS  PubMed  Google Scholar 

  • Levitan, I. B., 1988, Modulation of ion channels in neurons and other cells, Annu. Rev. Neurosci. 11:119–136.

    CAS  PubMed  Google Scholar 

  • Lichtinghagen, R., Stocker, M., Wittka, R., Boheim, G., Stuhmer, W., Ferrus, A., and Pongs, O., 1990, Molecular basis of altered excitability in Shaker mutants of Drosophila melanogaster, EMBO J. 9:4399–4407.

    CAS  PubMed  Google Scholar 

  • Lopez, G. A., Jan, Y. N., and Jan, L. Y., 1991, Hydrophobic substitution mutations in the S4 sequence alter voltage-dependent gating in Shaker K+ channels, Neuron 7:327–336.

    CAS  PubMed  Google Scholar 

  • Loughney, K., Kreber, R., and Ganetzky, B., 1989a, Molecular analysis of the para locus, a sodium channel gene in Drosophila,Cell 58:1143–1154.

    CAS  Google Scholar 

  • Loughney, K., Stern, M., Kreber, R., and Ganetzky, B., 1989b, Genetic and molecular analysis of a gene encoding sodium channels in Drosophila, in: Molecular Biology of Neurorecaptors and Ion Channels, Vol. H 32 (A. Maelicke, ed.), NATO ASI Series, Springer-Verlag, Berlin, pp. 201–214.

    Google Scholar 

  • Lucchesi, J. C., and Manning, J. E., 1987, Gene dosage in compensation Drosophila melanogaster, Adv. Genet. 24:371–429.

    CAS  PubMed  Google Scholar 

  • McCormack, K., Lin, J. W., Iverson, L. E., and Rudy, B., 1990a, Shaker K+ channel subunits form heteromultimeric channels with novel functional properties, Biochem. Biophys. Res. Commun. 171:1361–1371.

    CAS  Google Scholar 

  • McCormack, K., Lin, J. W., Ramaswami, M., Tanouye, M., Iverson, L., and Rudy, B., 1990, Heteromultimer formation can produce a large number of distinct K channels, Biophys. J. 57:209a.

    Google Scholar 

  • McCormack, K., Rudy, B., Ramaswami, M., Mathew, M. K., Iverson, L., McCormack, T. J., and Tanouye, M., 1990c, Mutagenesis of Shaker potassium channels: What’s behind the zipper? Biophys. J. 57:210a.

    Google Scholar 

  • MacKinnon, R., and Miller, C., 1989, Mutant potassium channels with altered binding of charybdotoxin, a pore-blocking peptide inhibitor, Science 245:1382–1385.

    CAS  PubMed  Google Scholar 

  • Mallart, A., Angaut-Petit, D., Bourret-Poulain, C., and Ferrus, A., 1991, Nerve terminal excitability and neuromuscular transmission in T(X:Y)V7 and Shaker mutants of Drosophila melanogaster, J. Neurogenet. 7:75–84.

    CAS  PubMed  Google Scholar 

  • Miller, C., 1989, Genetic manipulation of ion channels: A new approach to structure and mechanism, Neuron 2:1195–1205.

    CAS  PubMed  Google Scholar 

  • Miller, C., 1991, Annus mirabilis of potassium channels, Science 252:1092–1096.

    CAS  PubMed  Google Scholar 

  • Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S., 1984, Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence, Nature 312:121–127.

    CAS  PubMed  Google Scholar 

  • Noda, M., Ikeda, T., Kayano, T., Suzuki, H., Takeshima, H., Kurasaki, M., Takahashi, H., and Numa, S., 1986, Existence of distinct sodium channel messenger RNAs in rat brain, Nature 320:188–192.

    CAS  PubMed  Google Scholar 

  • O’Dowd, D. K., and Aldrich, R. W., 1988, Voltage-clamp analysis of sodium channels in wild-type and mutant Drosophila neurons, J. Neurosci. 8:3633–3643.

    PubMed  Google Scholar 

  • O’Dowd, D. K., Germeraad, S. E., and Aldrich, R. W., 1989, Alterations in the expression and gating of Drosophila sodium channels by mutations in the para gene, Neuron 2:1301–1311.

    PubMed  Google Scholar 

  • Okamoto, H., Sakai, K., Goto, S., Takasu-Ishikawa, E., and Hotta, Y., 1987, Isolation of Drosophila genomic clones homologous to the eel sodium channel gene, Proc. Jpn. Acad. 63B:284–288.

    Google Scholar 

  • Pak, W. L., and Pinto, L. H., 1976, Genetic approach to the study of the nervous system, Annu. Rev. Biophys. Bioeng. 5:397–448.

    CAS  PubMed  Google Scholar 

  • Papazian, D., Schwarz, T. L., Tempel, B. L., Jan, Y. N., and Jan, L., 1987, Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila, Science 237:749–753.

    CAS  PubMed  Google Scholar 

  • Papazian, D. M., Schwarz, T. L., Tempel, B. L., Timpe, L. C., and Jan, L. Y., 1988, Ion channels in Drosophila, Annu. Rev. Physiol. 50:379–394.

    CAS  PubMed  Google Scholar 

  • Papazian, D. M., Timpe, L. C., Jan, Y. N., and Jan, L. Y., 1991, Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence, Nature 349:305–310.

    CAS  PubMed  Google Scholar 

  • Pangs, O., Kecskemethy, N., Muller, R., Krah-Jentgens, I., Baumann, A., Kiltz, H. H., Canal, I., Llamazares, S., and Ferrus, A., 1988, Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila, EMBO J. 7:1087–1096.

    Google Scholar 

  • Ramaswami, M., and Tanouye, M., 1989, Two sodium chanel genes in Drosophila: Implications for channel diversity, Proc. Natl. Acad. Sci. USA 86:2079–2082.

    CAS  PubMed  Google Scholar 

  • Rudy, B., 1988, Diversity and ubiquity of K channels, Neuroscience 25:729–749.

    CAS  PubMed  Google Scholar 

  • Rudy, B., Kentros, C., and Vega-Saenz de Miera, E., 1991, Families of potassium channel genes in mammals: Toward an understanding of the molecular basis of potassium channel diversity, J. Mol. Cell. Neurosci. 2:89–102.

    CAS  Google Scholar 

  • Saito, M., and Wu, C.-F., 1991, Expression of ion channels and mutational effects in giant Drosophila neurons differentiated from cell division-arrested embryonic neuroblasts, J. Neurosci. 11:2135–2150.

    CAS  PubMed  Google Scholar 

  • Saito, M., and Wu, C.-F., 1992, Ionic channels in cultured Drosophila neurons, in: Invertebrate Molecular Neurobiology (Y. Pichon, ed.), Birkhäuser Verlag, Basel, in press.

    Google Scholar 

  • Sakai, K., Okamoto, H., and Hotta, Y., 1989, Pharmacological characterization of sodium channels in the primary culture of individual Drosophila embryos: Neurons of a mutant deficient in a putative sodium channel gene, Cell Differ. Dev. 26:107–118.

    CAS  PubMed  Google Scholar 

  • Salkoff, L., 1983, Genetic and voltage clamp analysis of a Drosophila potassium channel, Cold Spring Harbor Symp. Quant. Biol. 48:221–231.

    CAS  PubMed  Google Scholar 

  • Salkoff, L., and Wyman, R, 1981, Genetic modification of potassium channels in Drosophila Shaker mutants, Nature 293:228–230.

    CAS  PubMed  Google Scholar 

  • Salkoff, L., Butler, A., Wei, A., Scavarda, N., Giffen, K., Ifune, C., Goodman, R., and Mandel, G., 1987, Genomic organization and deduced amino acid sequence of a putative sodium channel gene in Drosophila, Science 237:744–749.

    CAS  PubMed  Google Scholar 

  • Schneider, I., and Blumenthal, A. B., 1978, Drosophila cell and tissue culture, in: The Genetics and Biology of Drosophila (M. Ashburner and T. R. F. Wright, eds.), Academic Press, New York, Vol. IIa, pp. 265–315.

    Google Scholar 

  • Schwarz, T. L., Tempel, B. L., Papazian, D. M., Jan, Y. N., and Jan, L., 1988, Multiple potassium channel components are produced by alternative splicing at the Shaker locus in Drosophila, Nature 331:137–142.

    CAS  PubMed  Google Scholar 

  • Seecof, R. L., and Unanue, R. L., 1968, Differentiation of embryonic Drosophila cells in vitro, Exp. Cell Res. 50:654–660.

    CAS  PubMed  Google Scholar 

  • Siddiqi, O., and Benzer, S., 1976, Neurophysiological defects in temperature-sensitive paralytic mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 73:3253–3257.

    CAS  Google Scholar 

  • Singh, S., and Wu, C.-F., 1989, Complete separation of four potassium currents in Drosophila, Neuron 2:1325–1329.

    CAS  PubMed  Google Scholar 

  • Singh, S., and Wu, C.-F., 1990, Properties of potassium currents and their role in membrane excitability in Drosophila larval muscle fibers, J. Exp. Biol. 152:59–76.

    CAS  PubMed  Google Scholar 

  • Solc, C. K., and Aldrich, R. J., 1988, Voltage-gated potassium channels in larval CNS neurons of Drosophila, J. Neurosci. 8:2556–2570.

    CAS  PubMed  Google Scholar 

  • Solc, C. K., Zagotta, W. N., and Aldrich, R. W., 1987, Single-channel and genetic analyses reveal two distinct A-type potassium channels in Drosophila, Science 236:1094–1098.

    CAS  PubMed  Google Scholar 

  • Stern, M., Kreber, R., and Ganetzky, B., 1990, Effects of para gene dosage on behavior and axonal excitability in Drosophila, Genetics 124:133–143.

    CAS  PubMed  Google Scholar 

  • Stuhmer, W., Conti, F., Suzuki, H., Wang, X., Noda, M., Yahagi, N., Kubo, H., and Numa, S., 1989, Structural parts involved in activation and inactivation of the sodium channel, Nature 339:597–603.

    CAS  PubMed  Google Scholar 

  • Sun, Y.-A., and Wu, C.-F., 1985, Genetic alterations of single-channel potassium currents in dissociated central nervous system neurons of Drosophila, J. Gen. Physiol. 86:16–17a.

    Google Scholar 

  • Suzuki, D. T., Grigliatti, T., and Williamson, R., 1971, Temperature-sensitive mutations in Drosophila melanogaster, VII. A mutation (paraLe) causing reversible adult pyrolysis, Proc. Natl. Acad. Sci. USA 68:890–893.

    CAS  PubMed  Google Scholar 

  • Tanouye, M. A., Ferrus, A., and Fujita, S. C., 1981, Abnormal action potentials associated with the Shaker locus of Drosophila, Proc. Natl. Acad. Sci. USA 78:6548–6552.

    CAS  PubMed  Google Scholar 

  • Tanouye, M. A., Kamb, C. A., Iverson, L. E., and Salkoff, L., 1986, Genetics and molecular biology of ionic channels in Drosophila, Anna. Rev. Neurosci. 9:255–276.

    CAS  Google Scholar 

  • Timpe, L. C., and Jan, L. Y., 1987, Gene dosage and complementation analysis of the Shaker locus in Drosophila, J. Neurosci. 7:1307–1317.

    CAS  PubMed  Google Scholar 

  • Timpe, L. C., Jan, Y. N., and Jan, L. Y., 1988, Four cDNA clones from the Sh locus of Drosophila induce kinetically distinct A-type potassium currents in Xenopus oocytes, Neuron 1:659–667.

    CAS  PubMed  Google Scholar 

  • Vassilev, P. M., Scheuer, T., and Catterall, W. A., 1988, Identification of an intracellular peptide segment involved in sodium inactivation, Science 241:1658–1661.

    CAS  PubMed  Google Scholar 

  • Warinke, J., Drysdale, R., and Ganetzky, B., 1991, A distinct potassium channel polypeptide encoded by the Drosophila eag locus, Science 252:1560–1562.

    Google Scholar 

  • Wei, A., and Salkoff, L., 1986, Occult Drosophila calcium channels and twinning of calcium and voltage-activated potassium channels, Science 233:780–782.

    CAS  PubMed  Google Scholar 

  • Wei, A., Covarrubia, M., Butler, A., Baker, K., Pak, M., and Salkoff, L., 1990, K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse, Science 248:599–603.

    CAS  PubMed  Google Scholar 

  • Wu, C.-F., 1988, Neurogenetic studies of Drosophila central nervous system neurons in culture, in: Cell Culture Approaches to Invertebrate Neurosciences (D. Beadle, G. Lees, and S. B. Kater, eds.), Academic Press, New York, pp. 149–187.

    Google Scholar 

  • Wu, C.-F., and Ganetzky, B., 1980, Genetic alteration of nerve membrane excitability in temperature-sensitive paralytic mutants of Drosophila melanogaster, Nature 286:814–816.

    CAS  PubMed  Google Scholar 

  • Wu, C.-F., and Ganetzky, B., 1986, Genes and ionic channels in Drosophila, in: Ion Channels in Neural Membranes (J. M. Ritchie, R. D. Keynes, and L. Bolis, eds.), Liss, New York, pp. 407–423.

    Google Scholar 

  • Wu, C.-F., and Ganetzky, B., 1988, Genetic and pharmacological analysis of ion channels in Drosophila, in: Molecular Basis of Drug and Pesticide Action (G. G. Lunt, ed.), Elsevier, Amsterdam, pp. 311–323.

    Google Scholar 

  • Wu, C.-F., and Haugland, F. N., 1985, Voltage-clamp analysis of membrane currents in Shaker mutants, J. Neurosci. 5:2626–2640.

    CAS  PubMed  Google Scholar 

  • Wu, C.-F., Ganetzky, B., Jan, L. Y., Jan, Y. N., and Benzer, S., 1978, A Drosophila mutant with a temperature-sensitive block in nerve conduction, Proc. Natl. Acad. Sci. USA 75:4047–4051.

    CAS  PubMed  Google Scholar 

  • Wu, C.-F., Ganetzky, B., Haugland, F., and Liu, A. X., 1983a, Potassium current in Drosophila: Different components affected by mutations of two genes, Science 220:1076–1078.

    CAS  Google Scholar 

  • Wu, C.-F., Suzuki, N., and Poo, M.-M., 1983b, Dissociated neurons from normal and mutant Drosophila larval central nervous systems in cell culture, J. Neurosci. 3:1888–1899.

    CAS  Google Scholar 

  • Wu, C.-F., Tsai, M.-C., Chen, M.-L., Zhong, Y., Singh, S., and Lee, C.Y., 1989, Actions of dendrotoxin on K+ channels and its effects on neuromuscular transmission in synergy with K+ channel-specific drugs and mutations in Drosophila melanogaster, J. Exp. Biol. 147:21–41.

    CAS  PubMed  Google Scholar 

  • Wu, C.-F., Sakai, K., Saito, M., and Hotta, Y., 1990, Giant Drosophila neurons differentiated from cytokinesis-arrested embryonic neuroblasts, J. Neurobiol. 21:499–507.

    CAS  PubMed  Google Scholar 

  • Yamamoto, D., and Suzuki, N., 1989a, Characterization of single non-inactivating potassium channels in primary neuronal cultures of Drosophila, J. Exp. Biol. 145:173–184.

    CAS  Google Scholar 

  • Yamamoto, D., and Suzuki, N., 1989b, Two distinct mechanisms are responsible for single K channel block by internal tetraethylammonium ions, Am. J. Physiol. 256:683-C687.

    Google Scholar 

  • Zagotta, W. N., Brainard, M. S., and Aldrich, R. W., 1988, Single-channel analysis of four distinct classes of potassium channels in Drosophila muscle, J. Neurosci. 8:4765–4779.

    CAS  PubMed  Google Scholar 

  • Zagotta, W. N., Germeraad, S., Garber, S. S., Hoshi, T., and Aldrich, R. W., 1989, Properties of ShB A-type potassium channels expressed in Shaker mutant Drosophila by germline transformation, Neuron 3:773–782.

    CAS  PubMed  Google Scholar 

  • Zhong, Y., 1991, Activity-dependent mechanisms underlying synaptic plasticity in Drosophila memory mutants, Ph.D. thesis, University of Iowa, Iowa City.

    Google Scholar 

  • Zhong, Y., and Wu, C.-F., 1991, Alternative of four identified K+ currents in Drosophila muscle by mutations eag, Science 252:1562–1564.

    CAS  PubMed  Google Scholar 

  • Zhong, Y., Budnik, V., and Wu, C.-F., 1992, Synaptic plasticity in Drosophila memory and hyperexcitable mutants: Role of cAMP cascade, J. Neurosci. 12:644–651.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, CF., Ganetzky, B. (1992). Neurogenetic Studies of Ion Channels in Drosophila . In: Narahashi, T. (eds) Ion Channels. Ion Channels. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3328-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3328-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6466-5

  • Online ISBN: 978-1-4615-3328-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics