Skip to main content

Homo- and Heterodimerization in Transcriptional Regulation

  • Chapter
Protein Dimerization and Oligomerization in Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 747))

  • 5269 Accesses

Abstract

Eukaryotic transcription factors bind DNA and typically serve to localize large multiprotein complexes to particular genes to up- or downregulate transcription, thereby coordinating cellular responses to a variety of signals. Different combinations of transcription factors within DNA-binding multiprotein complexes allow individual proteins to partake in multiple different regulatory pathways. Many transcription factors can form homo- and heterodimers (or oligomers) with different partners, thus modulating DNA-binding specificity and affinity and/or the recruitment of different binding partners. This chapter reviews several of the mechanisms by which the homo- and heterodimerization of transcription factors contributes to transcriptional regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mellor J. Dynamic nucleosomes and gene transcription. Trends Genet 2006; 22(6):320–329.

    Article  PubMed  CAS  Google Scholar 

  2. Siedlecki P, Zielenkiewicz P. Mammalian DNA methyltransferases. Acta Biochim Pol 2006; 53(2):245–256.

    PubMed  CAS  Google Scholar 

  3. Verdone L, Agricola E, Caserta M et al. Histone acetylation in gene regulation. Brief Funct Genomic Proteomic 2006; 5(3):209–221.

    Article  PubMed  CAS  Google Scholar 

  4. Shi Y, Whetstine JR. Dynamic regulation of histone lysine methylation by demethylases. Mol Cell 2007; 25(1):1–14.

    Article  PubMed  CAS  Google Scholar 

  5. Waterston RH, Lindblad-Toh K, Birney E et al. Initial sequencing and comparative analysis of the mouse genome. Nature 2002; 420(6915):520–562.

    Article  PubMed  CAS  Google Scholar 

  6. Levine M, Tjian R. Transcription regulation and animal diversity. Nature 2003; 424(6945):147–151.

    Article  PubMed  CAS  Google Scholar 

  7. Remenyi A, Scholer HR, Wilmanns M. Combinatorial control of gene expression. Nat Struct Mol Biol 2004; 11(9):812–815.

    Article  PubMed  CAS  Google Scholar 

  8. Roeder RG. Transcriptional regulation and the role of diverse coactivators in animal cells. FEBS Lett 2005; 579(4):909–915.

    Article  PubMed  CAS  Google Scholar 

  9. Kim TK, Maniatis T. The mechanism of transcriptional synergy of an in vitro assembled interferon-beta enhanceosome. Mol Cell 1997; 1(1):119–129.

    Article  PubMed  CAS  Google Scholar 

  10. Wolberger C. Multiprotein-DNA complexes in transcriptional regulation. Annu Rev Biophys Biomol Struct 1999; 28:29–56.

    Article  PubMed  CAS  Google Scholar 

  11. Burley SK, Kamada K. Transcription factor complexes. Curr Opin Struct Biol 2002; 12(2):225–230.

    Article  PubMed  CAS  Google Scholar 

  12. Ogata K, Sato K, Tahirov TH. Eukaryotic transcriptional regulatory complexes: cooperativity from near and afar. Curr Opin Struct Biol 2003; 13(1):40–48.

    Article  PubMed  CAS  Google Scholar 

  13. Harrison SC. A structural taxonomy of DNA-binding domains. Nature 1991; 353(6346):715–719.

    Article  PubMed  CAS  Google Scholar 

  14. Wasylyk B, Hahn SL, Giovane A. The Ets family of transcription factors. Eur J Biochem 1993; 211(1–2):7–18.

    Article  PubMed  CAS  Google Scholar 

  15. Shore P, Sharrocks AD. The MADS-box family of transcription factors. Eur J Biochem 1995; 229(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  16. Garrell J, Campuzano S. The helix-loop-helix domain: A common motif for bristles, muscles and sex. Bioessays 1991; 13(10):493–498.

    Article  PubMed  CAS  Google Scholar 

  17. Rushlow C, Warrior R. The rel family of proteins. Bioessays 1992; 14(2):89–95.

    Article  PubMed  CAS  Google Scholar 

  18. Horvath CM, Wen Z, Darnell JE Jr. A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain. Genes Dev 1995; 9(8):984–994.

    Article  PubMed  CAS  Google Scholar 

  19. Lim CP, Cao X. Structure, function and regulation of STAT proteins. Mol Biosyst 2006; 2(11):536–550.

    Article  PubMed  CAS  Google Scholar 

  20. Chen X, Vinkemeier U, Zhao Y et al. Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell 1998; 93(5):827–839.

    Article  PubMed  CAS  Google Scholar 

  21. Davis RL, Cheng PF, Lassar AB et al. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell 1990; 60(5):733–746.

    Article  PubMed  CAS  Google Scholar 

  22. McLachlan AD, Stewart M. Tropomyosin coiled-coil interactions: Evidence for an unstaggered structure. J Mol Biol 1975; 98(2):293–304.

    Article  PubMed  CAS  Google Scholar 

  23. Vinson C, Acharya A, Taparowsky EJ. Deciphering B-ZIP transcription factor interactions in vitro and in vivo. Biochim Biophys Acta 2006; 1759(1–2):4–12.

    PubMed  CAS  Google Scholar 

  24. Landschulz WH, Johnson PF, McKnight SL. The leucine zipper: A hypothetical structure common to a new class of DNA binding proteins. Science 1988; 240(4860):1759–1764.

    Article  PubMed  CAS  Google Scholar 

  25. O’Shea EK, Klemm JD, Kim PS et al. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 1991; 254(5031):539–544.

    Article  PubMed  Google Scholar 

  26. Patel L, Abate C, Curran T. Altered protein conformation on DNA binding by Fos and Jun. Nature 1990; 347(6293):572–575.

    Article  PubMed  CAS  Google Scholar 

  27. Weiss MA, Ellenberger T, Wobbe CR et al. Folding transition in the DNA-binding domain of GCN4 on specific binding to DNA. Nature 1990; 347(6293):575–578.

    Article  PubMed  CAS  Google Scholar 

  28. Tupler R, Perini G, Green MR. Expressing the human genome. Nature 2001; 409(6822):832–833.

    Article  PubMed  CAS  Google Scholar 

  29. Fassler J, Landsman D, Acharya A et al. B-ZIP proteins encoded by the Drosophila genome: evaluation of potential dimerization partners. Genome Res 2002; 12(8):1190–1200.

    Article  PubMed  CAS  Google Scholar 

  30. Vinson C, Myakishev M, Acharya A et al. Classification of human B-ZIP proteins based on dimerization properties. Mol Cell Biol 2002; 22(18):6321–6335.

    Article  PubMed  CAS  Google Scholar 

  31. Newman JR, Keating AE. Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science 2003; 300(5628):2097–2101.

    Article  PubMed  CAS  Google Scholar 

  32. Deppmann CD, Acharya A, Rishi V et al. Dimerization specificity of all 67 B-ZIP motifs in Arabidopsis thaliana: a comparison to Homo sapiens B-ZIP motifs. Nucleic Acids Res 2004; 32(11):3435–3445.

    Article  PubMed  CAS  Google Scholar 

  33. Fong JH, Keating AE, Singh M. Predicting specificity in bZIP coiled-coil protein interactions. Genome Biol 2004; 5(2):R11.

    Article  PubMed  Google Scholar 

  34. Deppmann CD, Alvania RS, Taparowsky EJ. Cross-species annotation of basic leucine zipper factor interactions: Insight into the evolution of closed interaction networks. Mol Biol Evol 2006; 23(8):1480–1492.

    Article  PubMed  CAS  Google Scholar 

  35. Acharya A, Ruvinov SB, Gal J et al. A heterodimerizing leucine zipper coiled coil system for examining the specificity of a position interactions: Amino acids I, V, L, N, A and K. Biochemistry 2002; 41(48):14122–14131.

    Article  PubMed  CAS  Google Scholar 

  36. Krylov D, Mikhailenko I, Vinson C. A thermodynamic scale for leucine zipper stability and dimerization specificity: E and g interhelical interactions. EMBO J 1994; 13(12):2849–2861.

    PubMed  CAS  Google Scholar 

  37. O’Shea EK, Rutkowski R, Kim PS. Mechanism of specificity in the Fos-Jun oncoprotein heterodimer. Cell 1992; 68(4):699–708.

    Article  PubMed  Google Scholar 

  38. Glover JN, Harrison SC. Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA. Nature 1995; 373(6511):257–261.

    Article  PubMed  CAS  Google Scholar 

  39. Chen L, Glover JN, Hogan PG et al. Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature 1998; 392(6671):42–48.

    Article  PubMed  CAS  Google Scholar 

  40. Messenguy F, Dubois E. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 2003; 316:1–21.

    Article  PubMed  CAS  Google Scholar 

  41. Laughon A. DNA binding specificity of homeodomains. Biochemistry 1991; 30(48):11357–11367.

    Article  PubMed  CAS  Google Scholar 

  42. Li T, Stark MR, Johnson AD et al. Crystal structure of the MATa1/MAT alpha 2 homeodomain heterodimer bound to DNA. Science 1995; 270(5234):262–269.

    Article  PubMed  CAS  Google Scholar 

  43. Keleher CA, Goutte C, Johnson AD. The yeast cell-type-specific repressor alpha 2 acts cooperatively with a noncell-type-specific protein. Cell 1988; 53(6):927–936.

    Article  PubMed  CAS  Google Scholar 

  44. Tan S, Richmond TJ. Crystal structure of the yeast MATalpha2/MCM1/DNA ternary complex. Nature 1998; 391(6668):660–666.

    Article  PubMed  CAS  Google Scholar 

  45. Goutte C, Johnson AD. Recognition of a DNA operator by a dimer composed of two different homeodomain proteins. EMBO J 1994; 13(6):1434–1442.

    PubMed  CAS  Google Scholar 

  46. Peterson BR, Sun LJ, Verdine GL. A critical arginine residue mediates cooperativity in the contact interface between transcription factors NFAT and AP-1. Proc Natl Acad Sci USA. 1996; 93(24):13671–13676.

    Article  PubMed  CAS  Google Scholar 

  47. Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 1997; 15:707–747.

    Article  PubMed  CAS  Google Scholar 

  48. Lagrange T, Kapanidis AN, Tang H et al. New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes Dev 1998; 12(1):34–44.

    Article  PubMed  CAS  Google Scholar 

  49. Thomas MC, Chiang CM. The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 2006; 41(3):105–178.

    Article  PubMed  CAS  Google Scholar 

  50. Thompson CC, Brown TA, McKnight SL. Convergence of Ets-and notch-related structural motifs in a heteromeric DNA binding complex. Science 1991; 253(5021):762–768.

    Article  PubMed  CAS  Google Scholar 

  51. Virbasius JV, Virbasius CA, Scarpulla RC. Identity of GABP with NRF-2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for an ETS domain activator of viral promoters. Genes Dev 1993; 7(3):380–392.

    Article  PubMed  CAS  Google Scholar 

  52. Wolberger C. Combinatorial transcription factors. Curr Opin Genet Dev 1998; 8(5):552–559.

    Article  PubMed  CAS  Google Scholar 

  53. Tahirov TH, Inoue-Bungo T, Morii H et al. Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Cell 2001; 104(5):755–767.

    Article  PubMed  CAS  Google Scholar 

  54. Bravo J, Li Z, Speck NA et al. The leukemia-associated AML1 (Runx1)—CBF beta complex functions as a DNA-induced molecular clamp. Nat Struct Biol 2001; 8(4):371–378.

    Article  PubMed  CAS  Google Scholar 

  55. Ghosh S, Gifford AM, Riviere LR et al. Cloning of the p50 DNA binding subunit of NF-kappa B: homology to rel and dorsal. Cell 1990; 62(5):1019–1029.

    Article  PubMed  CAS  Google Scholar 

  56. Muller CW, Rey FA, Sodeoka M et al. Structure of the NF-kappa B p50 homodimer bound to DNA. Nature 1995; 373(6512):311–317.

    Article  PubMed  CAS  Google Scholar 

  57. Ghosh G, van Duyne G, Ghosh S et al. Structure of NF-kappa B p50 homodimer bound to a kappa B site. Nature 1995; 373(6512):303–310.

    Article  PubMed  CAS  Google Scholar 

  58. Huang DB, Vu D, Cassiday LA et al. Crystal structure of NF-kappaB (p50)2 complexed to a high-affinity RNA aptamer. Proc Natl Acad Sci USA 2003; 100(16):9268–9273.

    Article  PubMed  CAS  Google Scholar 

  59. Chen YQ, Ghosh S, Ghosh G. A novel DNA recognition mode by the NF-kappa B p65 homodimer. Nat Struct Biol 1998; 5(1):67–73.

    Article  PubMed  Google Scholar 

  60. Brierley MM, Fish EN. Stats: multifaceted regulators of transcription. J Interferon Cytokine Res 2005; 25(12):733–744.

    Article  PubMed  CAS  Google Scholar 

  61. Fu XY, Kessler DS, Veals SA et al. ISGF3, the transcriptional activator induced by interferon alpha, consists of multiple interacting polypeptide chains. Proc Natl Acad Sci USA 1990; 87(21):8555–8559.

    Article  PubMed  CAS  Google Scholar 

  62. Angel P, Imagawa M, Chiu R et al. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 1987; 49(6):729–739.

    Article  PubMed  CAS  Google Scholar 

  63. Montminy MR, Sevarino KA, Wagner JA et al. Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proc Natl Acad Sci USA. 1986; 83(18):6682–6686.

    Article  PubMed  CAS  Google Scholar 

  64. van Dam H, Huguier S, Kooistra K et al. Autocrine growth and anchorage independence: two complementing Jun-controlled genetic programs of cellular transformation. Genes Dev 1998; 12(8):1227–1239.

    Article  PubMed  Google Scholar 

  65. Kemler I, Schreiber E, Muller MM et al. Octamer transcription factors bind to two different sequence motifs of the immunoglobulin heavy chain promoter. EMBO J 1989; 8(7):2001–2008.

    PubMed  CAS  Google Scholar 

  66. Tomilin A, Remenyi A, Lins K et al. Synergism with the coactivator OBF-1 (OCA-B, BOB-1) is mediated by a specific POU dimer configuration. Cell 2000; 103(6):853–864.

    Article  PubMed  CAS  Google Scholar 

  67. Botquin V, Hess H, Fuhrmann G et al. New POU dimer configuration mediates antagonistic control of an osteopontin preimplantation enhancer by Oct-4 and Sox-2. Genes Dev 1998; 12(13):2073–2090.

    Article  PubMed  CAS  Google Scholar 

  68. Dang CV, Barrett J, Villa-Garcia M et al. Intracellular leucine zipper interactions suggest c-Myc hetero-oligomerization. Mol Cell Biol 1991; 11(2):954–962.

    PubMed  CAS  Google Scholar 

  69. Blackwood EM, Eisenman RN. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 1991; 251(4998):1211–1217.

    Article  PubMed  CAS  Google Scholar 

  70. Prendergast GC, Lawe D, Ziff EB. Association of Myn, the murine homolog of max, with c-Myc stimulates methylation-sensitive DNA binding and ras cotransformation. Cell 1991; 65(3):395–407.

    Article  PubMed  CAS  Google Scholar 

  71. McMahon SB, Van Buskirk HA, Dugan KA et al. The novel ATM-related protein TRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 1998; 94(3):363–374.

    Article  PubMed  CAS  Google Scholar 

  72. Eilers M, Schirm S, Bishop JM. The MYC protein activates transcription of the alpha-prothymosin gene. EMBO J 1991; 10(1):133–141.

    PubMed  CAS  Google Scholar 

  73. Benvenisty N, Leder A, Kuo A et al. An embryonically expressed gene is a target for c-Myc regulation via the c-Myc-binding sequence. Genes Dev 1992; 6(12B):2513–2523.

    Article  PubMed  CAS  Google Scholar 

  74. Ayer DE, Lawrence QA, Eisenman RN. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 1995; 80(5):767–776.

    Article  PubMed  CAS  Google Scholar 

  75. Ayer DE, Eisenman RN. A switch from Myc:Max to Mad:Max heterocomplexes accompanies monocyte/ macrophage differentiation. Genes Dev 1993; 7(11):2110–2119.

    Article  PubMed  CAS  Google Scholar 

  76. Ayer DE, Kretzner L, Eisenman RN. Mad: A heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 1993; 72(2):211–222.

    Article  PubMed  CAS  Google Scholar 

  77. Dang CV. c-Myc target genes involved in cell growth, apoptosis and metabolism. Mol Cell Biol 1999; 19(1):1–11.

    PubMed  CAS  Google Scholar 

  78. Luscher B. Function and regulation of the transcription factors of the Myc/Max/Mad network. Gene 2001; 277(1–2):1–14.

    Article  PubMed  CAS  Google Scholar 

  79. Bouchard C, Dittrich O, Kiermaier A et al. Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes Dev 2001; 15(16):2042–2047.

    Article  PubMed  CAS  Google Scholar 

  80. Ron D, Habener JF. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev 1992; 6(3):439–453.

    Article  PubMed  CAS  Google Scholar 

  81. Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 2004; 11(4):381–389.

    Article  PubMed  CAS  Google Scholar 

  82. Batchvarova N, Wang XZ, Ron D. Inhibition of adipogenesis by the stress-induced protein CHOP (Gadd153). EMBO J 1995; 14(19):4654–4661.

    PubMed  CAS  Google Scholar 

  83. Tang QQ, Lane MD. Role of C/EBP homologous protein (CHOP-10) in the programmed activation of CCAT / enhancer-binding protein-beta during adipogenesis. Proc Natl Acad Sci USA 2000; 97(23):12446–12450.

    Article  PubMed  CAS  Google Scholar 

  84. Huang H, Lane MD, Tang QQ. Effect of serum on the down-regulation of CHOP-10 during differentiation of 3T3-L1 preadipocytes. Biochem Biophys Res Commun 2005; 338(2):1185–1188.

    Article  PubMed  CAS  Google Scholar 

  85. Benezra R, Davis RL, Lockshon D et al. The protein Id: A negative regulator of helix-loop-helix DNA binding proteins. Cell 1990; 61(1):49–59.

    Article  PubMed  CAS  Google Scholar 

  86. Ying QL, Nichols J, Chambers I et al. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 2003; 115(3):281–292.

    Article  PubMed  CAS  Google Scholar 

  87. Perk J, Iavarone A, Benezra R. Id family of helix-loop-helix proteins in cancer. Nat Rev Cancer 2005; 5(8):603–614.

    Article  PubMed  CAS  Google Scholar 

  88. Iavarone A, Lasorella A. ID proteins as targets in cancer and tools in neurobiology. Trends Mol Med 2006; 12(12):588–594.

    Article  PubMed  CAS  Google Scholar 

  89. Ruzinova MB, Benezra R. Id proteins in development, cell cycle and cancer. Trends Cell Biol 2003; 13(8):410–418.

    Article  PubMed  CAS  Google Scholar 

  90. Liu D, Ishima R, Tong KI et al. Solution structure of a TBP-TAF(II)230 complex: Protein mimicry of the minor groove surface of the TATA box unwound by TBP. Cell 1998; 94(5):573–583.

    Article  PubMed  CAS  Google Scholar 

  91. Pereira LA, van der Knaap JA, van den Boom V et al. TAF(II)170 interacts with the concave surface of TATA-binding protein to inhibit its DNA binding activity. Mol Cell Biol 2001; 21(21):7523–7534.

    Article  PubMed  CAS  Google Scholar 

  92. Kokubo T, Swanson MJ, Nishikawa JI et al. The yeast TAF145 inhibitory domain and TFIIA competitively bind to TATA-binding protein. Mol Cell Biol 1998; 18(2):1003–1012.

    PubMed  CAS  Google Scholar 

  93. Chicca JJ 2nd, Auble DT, Pugh BF. Cloning and biochemical characterization of TAF-172, a human homolog of yeast Mot1. Mol Cell Biol 1998; 18(3):1701–1710.

    PubMed  CAS  Google Scholar 

  94. Kamada K, Shu F, Chen H et al. Crystal structure of negative cofactor 2 recognizing the TBP-DNA transcription complex. Cell 2001; 106(1):71–81.

    Article  PubMed  CAS  Google Scholar 

  95. Virbasius CM, Wagner S, Green MR. A human nuclear-localized chaperone that regulates dimerization, DNA binding and transcriptional activity of bZIP proteins. Mol Cell 1999; 4(2):219–228.

    Article  PubMed  CAS  Google Scholar 

  96. Matuoka K, Yu Chen K. Nuclear factor Y (NF-Y) and cellular senescence. Exp Cell Res 1999; 253(2):365–371.

    Article  PubMed  CAS  Google Scholar 

  97. Liberati C, di Silvio A, Ottolenghi S et al. NF-Y binding to twin CCAT boxes: Role of Q-rich domains and histone fold helices. J Mol Biol 1999; 285(4):1441–1455.

    Article  PubMed  CAS  Google Scholar 

  98. Bellorini M, Lee DK, Dantonel JC et al. CCAT binding NF-Y-TBP interactions: NF-YB and NF-YC require short domains adjacent to their histone fold motifs for association with TBP basic residues. Nucleic Acids Res 1997; 25(11):2174–2181.

    Article  PubMed  CAS  Google Scholar 

  99. Sorger PK. Heat shock factor and the heat shock response. Cell 1991; 65(3):363–366.

    Article  PubMed  CAS  Google Scholar 

  100. Liu PC, Thiele DJ. Modulation of human heat shock factor trimerization by the linker domain. J Biol Chem 1999; 274(24):17219–17225.

    Article  PubMed  CAS  Google Scholar 

  101. Wu C. Heat shock transcription factors: Structure and regulation. Annu Rev Cell Dev Biol 1995; 11:441–469.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merlin Crossley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Funnell, A.P.W., Crossley, M. (2012). Homo- and Heterodimerization in Transcriptional Regulation. In: Matthews, J.M. (eds) Protein Dimerization and Oligomerization in Biology. Advances in Experimental Medicine and Biology, vol 747. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3229-6_7

Download citation

Publish with us

Policies and ethics