Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 615))

The main effectors of apoptosis encompass proteases from the caspase family, which reside as latent precursors in most nucleated animal cells. The apoptotic caspases constitute a minimal two-step signaling pathway. The apical (initiator) caspases are activated within oligomeric signaling complexes in response to apoptotic stimuli. Their mechanism of activation probably results from proximity-induced clustering to the dimeric active forms. Once activated, the apical caspases directly activate the executioner (effector) caspases by limited proteolytic cleavage. The distinct activation mechanisms explain how an apoptotic stimulus is converted to proteolytic activity, and how this activity is amplified to allow for limited proteolysis of the dozens of protein substrates whose cleavage is required for efficient apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Salvesen, G. S. and Dixit, V. M. (1997). Caspases: intracellular signaling by proteolysis. Cell 91, 443–446.

    Article  PubMed  CAS  Google Scholar 

  2. Cohen, G. M. (1997). Caspases: the executioners of apoptosis. Biochem J. 326, 1–16.

    PubMed  CAS  Google Scholar 

  3. Thornberry, N. A. and Lazebnik, Y. (1998). Caspases: enemies within. Science 281, 1312–1316.

    Article  PubMed  CAS  Google Scholar 

  4. Alnemri, E. S. et al. (1996). Human ICE/CED-3 protease nomenclature. Cell 87, 171.

    Article  PubMed  CAS  Google Scholar 

  5. Odake, S. et al. (1991). Human and murine cytotoxic T lymphocyte serine proteases: subsite mapping with peptide thioester substrates and inhibition of enzyme activity and cytolysis by isocoumarins. Biochemistry 30, 2217–2227.

    Article  PubMed  CAS  Google Scholar 

  6. Harris, J. L. et al. (2000). Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc Natl Acad Sci USA 97, 7754–7759.

    Article  PubMed  CAS  Google Scholar 

  7. Nicholson, D. W. (1999). Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6, 1028–1042.

    Article  PubMed  CAS  Google Scholar 

  8. Timmer, J. C. and Salvesen, G. S. (2007). Caspase substrates. Cell Death Differ 14, 66–72.

    Article  PubMed  CAS  Google Scholar 

  9. Gutierrez, G. J. and Ronai, Z. (2006). Ubiquitin and SUMO systems in the regulation of mitotic checkpoints. Trends Biochem Sci 31, 324–332.

    Article  PubMed  CAS  Google Scholar 

  10. Suzuki, K., Hata, S., Kawabata, Y., and Sorimachi, H. (2004). Structure, activation, and biology of calpain. Diabetes 53 (Suppl 1), S12–S18.

    Article  PubMed  CAS  Google Scholar 

  11. Kuida, K. et al. (1995). Altered cytokine export and apoptosis in mice deficient in interleukin-1-beta converting enzyme. Science 267, 2000–2003.

    Article  PubMed  CAS  Google Scholar 

  12. Wang, S., Miura, M., Jung, Y.-K., Zhu, H., and Yuan, J. (1998). Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92, 501–509.

    Article  PubMed  CAS  Google Scholar 

  13. Zheng, T. S., Hunot, S., Kuida, K., and Flavell, R. A. (1999). Caspase knockouts: matters of life and death. Cell Death Differ 6, 1043–1053.

    Article  PubMed  CAS  Google Scholar 

  14. Oppenheim, R. W. et al. (2001). Programmed cell death of developing mammalian neurons after genetic deletion of caspases. J Neurosci 21, 4752–4760.

    PubMed  CAS  Google Scholar 

  15. Orth, K., O’Rourke, K., Salvesen, G. S., and Dixit, V. M. (1996). Molecular ordering of apoptotic mammalian CED-3/ICE-like proteases. J Biol Chem 271, 20977–20980.

    Article  PubMed  CAS  Google Scholar 

  16. Stennicke, H. R. and Salvesen, G. S. (1997). Biochemical characteristics of caspases-3, -6, -7, and -8. J Biol Chem 272, 25719–25723.

    Article  PubMed  CAS  Google Scholar 

  17. Fuentes-Prior, P. and Salvesen, G. S. (2004). The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384, 201–232.

    Article  PubMed  CAS  Google Scholar 

  18. Boldin, M. P., Goncharov, T. M., Goltsev, Y. V., and Wallach, D. (1996). Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85, 803–815.

    Article  PubMed  CAS  Google Scholar 

  19. Muzio, M., Stockwell, B. R., Stennicke, H. R., Salvesen, G. S., and Dixit, V. M. (1998). An induced proximity model for caspase-8 activation. J Biol Chem 273, 2926–2930.

    Article  PubMed  CAS  Google Scholar 

  20. LeBlanc, H. N. and Ashkenazi, A. (2003). Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 10, 66–75.

    Article  PubMed  CAS  Google Scholar 

  21. Kischkel, F. C. et al. (2001). Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 276, 46639–46646.

    Article  PubMed  CAS  Google Scholar 

  22. Carrington, P. E. et al. (2006). The structure of FADD and its mode of interaction with procaspase-8. Mol Cell 22, 599–610.

    Article  PubMed  CAS  Google Scholar 

  23. Yang, J. K. et al. (2005). Crystal Structure of MC159 reveals molecular mechanism of DISC assembly and FLIP inhibition. Mol Cell 20, 939–949.

    Article  PubMed  CAS  Google Scholar 

  24. Li, F. Y., Jeffrey, P. D., Yu, J. W., and Shi, Y. (2006). Crystal structure of a viral FLIP: insights into FLIP-mediated inhibition of death receptor signaling. J Biol Chem 281, 2960–2968.

    Article  PubMed  CAS  Google Scholar 

  25. Lee, K. H. et al. (2006). The role of receptor internalization in CD95 signaling. EMBO J 25, 1009–1023.

    Article  PubMed  CAS  Google Scholar 

  26. Li, P. et al. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489.

    Article  PubMed  CAS  Google Scholar 

  27. Zou, H., Henzel, W. J., Liu, X., Lutschg, A., and Wang, X. (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413.

    Article  PubMed  CAS  Google Scholar 

  28. Riedl, S. J. and Salvesen, G. S. (2007). The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8, 405–413.

    Article  PubMed  CAS  Google Scholar 

  29. Renatus, M., Stennicke, H. R., Scott, F. L., Liddington, R. C., and Salvesen, G. S. (2001). Dimer formation drives the activation of the cell death protease caspase 9. Proc Natl Acad Sci USA 98, 14250–14255.

    Article  PubMed  CAS  Google Scholar 

  30. Stennicke, H. R. et al. (1999). Caspase-9 can be activated without proteolytic processing. J Biol Chem 274, 8359–8362.

    Article  PubMed  CAS  Google Scholar 

  31. Pop, C., Timmer, J., Sperandio, S., and Salvesen, G. S. (2006). The apoptosome activates caspase-9 by dimerization. Mol Cell 22, 269–275.

    Article  PubMed  CAS  Google Scholar 

  32. Rodriguez, J. and Lazebnik, Y. (1999). Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev 13, 3179–3184.

    Article  PubMed  CAS  Google Scholar 

  33. Boatright, K. M. et al. (2003). A unified model for apical caspase activation. Mol Cell 11, 529–541.

    Article  PubMed  CAS  Google Scholar 

  34. Boatright, K. M. and Salvesen, G. S. (2003). Mechanisms of caspase activation. Curr Opin Cell Biol 15, 725–731.

    Article  PubMed  CAS  Google Scholar 

  35. Shi, Y. (2004). Caspase activation: revisiting the induced proximity model. Cell 117, 855–858.

    Article  PubMed  CAS  Google Scholar 

  36. Srinivasula, S. M. et al. (2001). A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410, 112–116.

    Article  PubMed  CAS  Google Scholar 

  37. Acehan, D. et al. (2002). Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding and activation. Mol Cell 9, 423–432.

    Article  PubMed  CAS  Google Scholar 

  38. Martinon, F. and Tschopp, J. (2004). Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117, 561–574.

    Article  PubMed  CAS  Google Scholar 

  39. Riedl, S. J. et al. (2001). Structural basis for the activation of human procaspase-7. Proc Natl Acad Sci USA 98, 14790–14795.

    Article  PubMed  CAS  Google Scholar 

  40. Chai, J. et al. (2001). Crystal structure of a procaspase-7 zymogen. Mechanisms of activation and substrate binding. Cell 107, 399–407.

    Article  PubMed  CAS  Google Scholar 

  41. Bose, K. and Clark, A. C. (2001). Dimeric procaspase-3 unfolds via a four-state equilibrium process. Biochemistry 40, 14236–14242.

    Article  PubMed  CAS  Google Scholar 

  42. Donepudi, M., Mac Sweeney, A., Briand, C., and Gruetter, M. G. (2003). Insights into the regulatory mechanism for caspase-8 activation. Mol Cell 11, 543–549.

    Article  PubMed  CAS  Google Scholar 

  43. Mallet, V. O. et al. (2002). Conditional cell ablation by tight control of caspase-3 dimerization in transgenic mice. Nat Biotechnol. 20, 1234–1239.

    Article  PubMed  CAS  Google Scholar 

  44. Salvesen, G. S. and Duckett, C. S. (2002). IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 3, 401–410.

    Article  PubMed  CAS  Google Scholar 

  45. Verhagen, A. M., Coulson, E. J., and Vaux, D. L. (2001). Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol 2, REVIEWS3009.

    Google Scholar 

  46. Eckelman, B. P., Salvesen, G. S., and Scott, F. L. (2006). Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7, 988–994.

    Article  PubMed  CAS  Google Scholar 

  47. Deveraux, Q. L. and Reed, J. C. (1999). IAP family proteins–suppressors of apoptosis. Genes Dev 13, 239–252.

    Article  PubMed  CAS  Google Scholar 

  48. Uren, A. G., Coulson, E. J., and Vaux, D. L. (1998). Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in viruses, nematodes, vertebrates and yeasts. Trends Biochem Sci 23, 159–162.

    Article  PubMed  CAS  Google Scholar 

  49. Chai, J. et al. (2001). Structural basis of caspase-7 inhibition by XIAP. Cell 104, 769–780.

    Article  PubMed  CAS  Google Scholar 

  50. Huang, Y. et al. (2001). Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 104, 781–790.

    PubMed  CAS  Google Scholar 

  51. Riedl, S. J. et al. (2001). Structural basis for the inhibition of caspase-3 by XIAP. Cell 104, 791–800.

    Article  PubMed  CAS  Google Scholar 

  52. Shiozaki, E. N. et al. (2003). Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11, 519–527.

    Article  PubMed  CAS  Google Scholar 

  53. Lamkanfi, M., Festjens, N., Declercq, W., Vanden Berghe, T., and Vandenabeele, P. (2007). Caspases in cell survival, proliferation and differentiation. Cell Death Differ 14, 44–55.

    Article  PubMed  CAS  Google Scholar 

  54. Ashkenazi, A. and Dixit, V. M. (1998). Death receptors: signaling and modulation. Science 281, 1305–1308.

    Article  PubMed  CAS  Google Scholar 

  55. Green, D. R. and Reed, J. C. (1998). Mitochondria and apoptosis. Science 281, 1309–1312.

    Article  PubMed  CAS  Google Scholar 

  56. Chang, D. W. et al. (2002). c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 21, 3704–3714.

    Article  PubMed  CAS  Google Scholar 

  57. Wei, Y., et al. (2000). The structures of caspases-1, -3, -7 and -8 reveal the basis for substrate and inhibitor selectivity. Chem Biol 7, 423–432.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Salvesen, G.S., Riedl, S.J. (2008). Caspase Mechanisms. In: Programmed Cell Death in Cancer Progression and Therapy. Advances in Experimental Medicine and Biology, vol 615. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6554-5_2

Download citation

Publish with us

Policies and ethics