The main effectors of apoptosis encompass proteases from the caspase family, which reside as latent precursors in most nucleated animal cells. The apoptotic caspases constitute a minimal two-step signaling pathway. The apical (initiator) caspases are activated within oligomeric signaling complexes in response to apoptotic stimuli. Their mechanism of activation probably results from proximity-induced clustering to the dimeric active forms. Once activated, the apical caspases directly activate the executioner (effector) caspases by limited proteolytic cleavage. The distinct activation mechanisms explain how an apoptotic stimulus is converted to proteolytic activity, and how this activity is amplified to allow for limited proteolysis of the dozens of protein substrates whose cleavage is required for efficient apoptosis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Salvesen, G. S. and Dixit, V. M. (1997). Caspases: intracellular signaling by proteolysis. Cell 91, 443–446.
Cohen, G. M. (1997). Caspases: the executioners of apoptosis. Biochem J. 326, 1–16.
Thornberry, N. A. and Lazebnik, Y. (1998). Caspases: enemies within. Science 281, 1312–1316.
Alnemri, E. S. et al. (1996). Human ICE/CED-3 protease nomenclature. Cell 87, 171.
Odake, S. et al. (1991). Human and murine cytotoxic T lymphocyte serine proteases: subsite mapping with peptide thioester substrates and inhibition of enzyme activity and cytolysis by isocoumarins. Biochemistry 30, 2217–2227.
Harris, J. L. et al. (2000). Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc Natl Acad Sci USA 97, 7754–7759.
Nicholson, D. W. (1999). Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6, 1028–1042.
Timmer, J. C. and Salvesen, G. S. (2007). Caspase substrates. Cell Death Differ 14, 66–72.
Gutierrez, G. J. and Ronai, Z. (2006). Ubiquitin and SUMO systems in the regulation of mitotic checkpoints. Trends Biochem Sci 31, 324–332.
Suzuki, K., Hata, S., Kawabata, Y., and Sorimachi, H. (2004). Structure, activation, and biology of calpain. Diabetes 53 (Suppl 1), S12–S18.
Kuida, K. et al. (1995). Altered cytokine export and apoptosis in mice deficient in interleukin-1-beta converting enzyme. Science 267, 2000–2003.
Wang, S., Miura, M., Jung, Y.-K., Zhu, H., and Yuan, J. (1998). Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92, 501–509.
Zheng, T. S., Hunot, S., Kuida, K., and Flavell, R. A. (1999). Caspase knockouts: matters of life and death. Cell Death Differ 6, 1043–1053.
Oppenheim, R. W. et al. (2001). Programmed cell death of developing mammalian neurons after genetic deletion of caspases. J Neurosci 21, 4752–4760.
Orth, K., O’Rourke, K., Salvesen, G. S., and Dixit, V. M. (1996). Molecular ordering of apoptotic mammalian CED-3/ICE-like proteases. J Biol Chem 271, 20977–20980.
Stennicke, H. R. and Salvesen, G. S. (1997). Biochemical characteristics of caspases-3, -6, -7, and -8. J Biol Chem 272, 25719–25723.
Fuentes-Prior, P. and Salvesen, G. S. (2004). The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384, 201–232.
Boldin, M. P., Goncharov, T. M., Goltsev, Y. V., and Wallach, D. (1996). Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85, 803–815.
Muzio, M., Stockwell, B. R., Stennicke, H. R., Salvesen, G. S., and Dixit, V. M. (1998). An induced proximity model for caspase-8 activation. J Biol Chem 273, 2926–2930.
LeBlanc, H. N. and Ashkenazi, A. (2003). Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 10, 66–75.
Kischkel, F. C. et al. (2001). Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 276, 46639–46646.
Carrington, P. E. et al. (2006). The structure of FADD and its mode of interaction with procaspase-8. Mol Cell 22, 599–610.
Yang, J. K. et al. (2005). Crystal Structure of MC159 reveals molecular mechanism of DISC assembly and FLIP inhibition. Mol Cell 20, 939–949.
Li, F. Y., Jeffrey, P. D., Yu, J. W., and Shi, Y. (2006). Crystal structure of a viral FLIP: insights into FLIP-mediated inhibition of death receptor signaling. J Biol Chem 281, 2960–2968.
Lee, K. H. et al. (2006). The role of receptor internalization in CD95 signaling. EMBO J 25, 1009–1023.
Li, P. et al. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489.
Zou, H., Henzel, W. J., Liu, X., Lutschg, A., and Wang, X. (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413.
Riedl, S. J. and Salvesen, G. S. (2007). The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8, 405–413.
Renatus, M., Stennicke, H. R., Scott, F. L., Liddington, R. C., and Salvesen, G. S. (2001). Dimer formation drives the activation of the cell death protease caspase 9. Proc Natl Acad Sci USA 98, 14250–14255.
Stennicke, H. R. et al. (1999). Caspase-9 can be activated without proteolytic processing. J Biol Chem 274, 8359–8362.
Pop, C., Timmer, J., Sperandio, S., and Salvesen, G. S. (2006). The apoptosome activates caspase-9 by dimerization. Mol Cell 22, 269–275.
Rodriguez, J. and Lazebnik, Y. (1999). Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev 13, 3179–3184.
Boatright, K. M. et al. (2003). A unified model for apical caspase activation. Mol Cell 11, 529–541.
Boatright, K. M. and Salvesen, G. S. (2003). Mechanisms of caspase activation. Curr Opin Cell Biol 15, 725–731.
Shi, Y. (2004). Caspase activation: revisiting the induced proximity model. Cell 117, 855–858.
Srinivasula, S. M. et al. (2001). A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410, 112–116.
Acehan, D. et al. (2002). Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding and activation. Mol Cell 9, 423–432.
Martinon, F. and Tschopp, J. (2004). Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117, 561–574.
Riedl, S. J. et al. (2001). Structural basis for the activation of human procaspase-7. Proc Natl Acad Sci USA 98, 14790–14795.
Chai, J. et al. (2001). Crystal structure of a procaspase-7 zymogen. Mechanisms of activation and substrate binding. Cell 107, 399–407.
Bose, K. and Clark, A. C. (2001). Dimeric procaspase-3 unfolds via a four-state equilibrium process. Biochemistry 40, 14236–14242.
Donepudi, M., Mac Sweeney, A., Briand, C., and Gruetter, M. G. (2003). Insights into the regulatory mechanism for caspase-8 activation. Mol Cell 11, 543–549.
Mallet, V. O. et al. (2002). Conditional cell ablation by tight control of caspase-3 dimerization in transgenic mice. Nat Biotechnol. 20, 1234–1239.
Salvesen, G. S. and Duckett, C. S. (2002). IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 3, 401–410.
Verhagen, A. M., Coulson, E. J., and Vaux, D. L. (2001). Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol 2, REVIEWS3009.
Eckelman, B. P., Salvesen, G. S., and Scott, F. L. (2006). Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7, 988–994.
Deveraux, Q. L. and Reed, J. C. (1999). IAP family proteins–suppressors of apoptosis. Genes Dev 13, 239–252.
Uren, A. G., Coulson, E. J., and Vaux, D. L. (1998). Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in viruses, nematodes, vertebrates and yeasts. Trends Biochem Sci 23, 159–162.
Chai, J. et al. (2001). Structural basis of caspase-7 inhibition by XIAP. Cell 104, 769–780.
Huang, Y. et al. (2001). Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 104, 781–790.
Riedl, S. J. et al. (2001). Structural basis for the inhibition of caspase-3 by XIAP. Cell 104, 791–800.
Shiozaki, E. N. et al. (2003). Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11, 519–527.
Lamkanfi, M., Festjens, N., Declercq, W., Vanden Berghe, T., and Vandenabeele, P. (2007). Caspases in cell survival, proliferation and differentiation. Cell Death Differ 14, 44–55.
Ashkenazi, A. and Dixit, V. M. (1998). Death receptors: signaling and modulation. Science 281, 1305–1308.
Green, D. R. and Reed, J. C. (1998). Mitochondria and apoptosis. Science 281, 1309–1312.
Chang, D. W. et al. (2002). c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 21, 3704–3714.
Wei, Y., et al. (2000). The structures of caspases-1, -3, -7 and -8 reveal the basis for substrate and inhibitor selectivity. Chem Biol 7, 423–432.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer Science + Business Media B.V
About this chapter
Cite this chapter
Salvesen, G.S., Riedl, S.J. (2008). Caspase Mechanisms. In: Programmed Cell Death in Cancer Progression and Therapy. Advances in Experimental Medicine and Biology, vol 615. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6554-5_2
Download citation
DOI: https://doi.org/10.1007/978-1-4020-6554-5_2
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-6553-8
Online ISBN: 978-1-4020-6554-5
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)