Abstract
The application of antibodies has transcended across many areas of work but mainly as a research tool, for diagnostic and for therapeutic applications. Antibodies are immunoproteins from vertebrates that have the unique property of specifically binding foreign molecules and distinguish target antigens. This property allows antibodies to effectively protect the host from infections. Apart from the hybridoma technology using transgenic animals, antibody phage display is commonly considered the gold standard technique for the isolation of human monoclonal antibodies. The concept of antibody phage display surrounds the ability to display antibody fragments on the surface of M13 bacteriophage particles with the corresponding gene packaged within the particle. A repetitive in vitro affinity based selection process permits the enrichment of target specific binders. This process of recombinant human monoclonal antibody generation also enables additional engineering for various applications. This makes phage display an indispensable technique for antibody development and engineering activities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hoffman W, Lakkis FG, Chalasani G et al (2016) B cells, antibodies, and more. Clin J Am Soc Nephrol 11:137 –154
Chi X, Li Y, Qiu X et al (2020) V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanism and regulation. Immunology 160:233 –247
Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, Wu HC et al (2020) Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 27(1):1–30
Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495 –497
Barbas CF, Kang AS, Lerner RA, Benkovic SJ et al (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A 88:7978
Breitling F, Dübel S, Seehaus T, Klewinghaus I, Little M et al (1991) A surface expression vector for antibody screening. Gene 104:147 –153
McCafferty J, Griffiths AD, Winter G, Chiswell DJ et al (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552 –554
Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315 –1317
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM et al (2020) Phage display derived monoclonal antibodies: from bench to bedside. Front Immunol 11:1986
Frenzel A, Schirrmann T, Hust M et al (2016) Phage display-derived human antibodies in clinical development and therapy. MAbs 8:1177
Wen J, Yuan K, Wen J, Yuan K et al (2021) Phage display technology, phage display system, antibody library, prospects and challenges. Adv Microbiol 11:181 –189
Lim CC, Chan SK, Lim YY, Ishikawa Y, Choong YS, Nagaoka Y, Lim TS et al (2021) Development and structural characterisation of human scFv targeting MDM2 spliced variant MDM215kDa. Mol Immunol 135:191 –203
Russo G, Meier D, Helmsing S, Wenzel E, Oberle F, Frenzel A, Hust M et al (2018) Parallelized antibody selection in microtiter plates. Methods Mol Biol 1701:273 –284
Porter RR (1963) Chemical structure of γ-globulin and antibodies. Br Med Bull 19:197 –201
Alzari PM, Lascombe MB, Poljak RJ et al (1988) Three-dimensional structure of antibodies. Annu Rev Immunol 6:555 –580
Barbié V, Lefranc MP (1998) The human immunoglobulin kappa variable (IGKV) genes and joining (IGKJ) segments. Exp Clin Immunogenet 15:171 –183
Malcolm S, Barton P, Murphy C, Ferguson-Smith MA, Bentley DL, Rabbitts TH et al (1982) Localization of human immunoglobulin kappa light chain variable region genes to the short arm of chromosome 2 by in situ hybridization. Proc Natl Acad Sci U S A 79:4957 –4961
Chiu ML, Goulet DR, Teplyakov A, Gilliland GL et al (2019) Antibody structure and function: the basis for engineering therapeutics. Antibodies (Basel). https://doi.org/10.3390/ANTIB8040055
Hanson QM, Barb AW (2015) A perspective on the structure and receptor binding properties of immunoglobulin G Fc. Biochemistry 54:2931 –2942
Bruhns P, Jönsson F (2015) Mouse and human FcR effector functions. Immunol Rev 268:25 –51
Power CA, Bates A (2019) David vs. Goliath: the structure, function, and clinical prospects of antibody fragments. Antibodies. https://doi.org/10.3390/ANTIB8020028
Kinman AWL, Pompano RR (2019) Optimization of enzymatic antibody fragmentation for yield, efficiency, and binding affinity. Bioconjug Chem 30:800 –807
Huston JS, Levinson D, Mudgett-Hunter M et al (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci 85:5879 –5883
Almagro JC, Pedraza-Escalona M, Arrieta HI, Pérez-Tapia SM et al (2019) Phage display libraries for antibody therapeutic discovery and development. Antibodies (Basel). https://doi.org/10.3390/ANTIB8030044
Kafil V, Saei AA, Tohidkia MR, Barar J, Omidi Y et al (2020) Immunotargeting and therapy of cancer by advanced multivalence antibody scaffolds. J Drug Target 28:1018 –1033. https://doi.org/10.1080/1061186X20201772796
Steinwand M, Droste P, Frenzel A, Hust M, Dübel S, Schirrmann T et al (2014) The influence of antibody fragment format on phage display based affinity maturation of IgG. MAbs 6:204 –218
Omar N, Hamidon NH, Yunus MH, Noordin R, Choong YS, Lim TS et al (2018) Generation and selection of naïve Fab library for parasitic antigen: anti-BmSXP antibodies for lymphatic filariasis. Biotechnol Appl Biochem 65:346 –354
Loh Q, Leong SW, Tye GJ, Choong YS, Lim TS et al (2015) Improved Fab presentation on phage surface with the use of molecular chaperone coplasmid system. Anal Biochem 477:56 –61
Khodabakhsh F, Behdani M, Rami A, Kazemi-Lomedasht F et al (2018) Single-domain antibodies or nanobodies: a class of next-generation antibodies. Int Rev Immunol 37:316 –322
Muyldermans S, Atarhouch T, Saldanha J, Barbosa JARG, Hamers R et al (1994) Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Eng 7:1129 –1135
Nuttall SD, Krishnan UV, Doughty L, Pearson K, Ryan MT, Hoogenraad NJ, Hattarki M, Carmichael JA, Irving RA, Hudson PJ et al (2003) Isolation and characterization of an IgNAR variable domain specific for the human mitochondrial translocase receptor Tom70. Eur J Biochem 270:3543 –3554
Hairul Bahara NH, Chin ST, Choong YS, Lim TS et al (2016) Construction of a semisynthetic human VH single-domain antibody library and selection of domain antibodies against α-crystalline of mycobacterium tuberculosis. J Biomol Screen 21:35 –43
Bélanger K, Tanha J (2021) High-efficacy, high-manufacturability human VH domain antibody therapeutics from transgenic sources. Protein Eng Des Sel 34:1 –7
Rossotti MA, Bélanger K, Henry KA, Tanha J et al (2022) Immunogenicity and humanization of single-domain antibodies. FEBS J 289:4304 –4327
Ledsgaard L, Ljungars A, Rimbault C, Sørensen CV, Tulika T, Wade J, Wouters Y, McCafferty J, Laustsen AH et al (2022) Advances in antibody phage display technology. Drug Discov Today 27:2151 –2169
Nagano K, Tsutsumi Y (2021) Phage display technology as a powerful platform for antibody drug discovery. Viruses. https://doi.org/10.3390/V13020178
Oreste U, Ametrano A, Coscia MR et al (2021) On origin and evolution of the antibody molecule. Biology (Basel) 10:1 –18
Hust M, Dübel S (2005) Phage display vectors for the in vitro generation of human antibody fragments. Methods Mol Biol 295:71 –96
Hamidon NH, Suraiya S, Sarmiento ME, Acosta A, Norazmi MN, Lim TS (2018) Immune TB antibody phage display library as a tool to study B cell immunity in TB infections. Appl Biochem Biotechnol 184:852 –868
Rahumatullah A, Ahmad A, Noordin R, Lim TS (2015) Delineation of BmSXP antibody V-gene usage from a lymphatic filariasis based immune scFv antibody library. Mol Immunol 67:512 –523
Rahumatullah A, Karim IZA, Noordin R, Lim TS (2017) Antibody-based protective immunity against helminth infections: antibody phage display derived antibodies against BmR1 antigen. Int J Mol Sci. https://doi.org/10.3390/IJMS18112376
Chan SK, Lim TS (2017) Immune human antibody libraries for infectious diseases. Adv Exp Med Biol 1053:61 –78
Wenzel EV, Bosnak M, Tierney R, Schubert M, Brown J, Dübel S, Efstratiou A, Sesardic D, Stickings P, Hust M (2020) Human antibodies neutralizing diphtheria toxin in vitro and in vivo. Sci Rep 10:1 –21
Lai JY, Lim TS (2020) Infectious disease antibodies for biomedical applications: a mini review of immune antibody phage library repertoire. Int J Biol Macromol 163:640
Rahumatullah A, Ahmad A, Noordin R, Lai JY, Baharudeen Z, Lim TS (2020) Applicability of Brugia malayi immune antibody library for the isolation of a human recombinant monoclonal antibody to Echinococcus granulosus antigen B. Exp Parasitol. https://doi.org/10.1016/J.EXPPARA.2020.108029
Rahumatullah A, Balachandra D, Noordin R, Baharudeen Z, Lim YY, Choong YS, Lim TS (2021) Broad specificity of immune helminth scFv library to identify monoclonal antibodies targeting Strongyloides. Sci Rep 11:2502
Kügler J, Wilke S, Meier D et al (2015) Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnol. https://doi.org/10.1186/S12896-015-0125-0
Lim BN, Chin CF, Choong YS, Ismail A, Lim TS (2016) Generation of a naïve human single chain variable fragment (scFv) library for the identification of monoclonal scFv against Salmonella Typhi Hemolysin E antigen. Toxicon 117:94 –101
Lim TS, Mollova S, Rubelt F, Sievert V, Dübel S, Lehrach H, Konthur Z (2010) V-gene amplification revisited – an optimised procedure for amplification of rearranged human antibody genes of different isotypes. Nat Biotechnol 27:108 –117
Kügler J, Tomszak F, Frenzel A, Hust M (2018) Construction of human immune and naive scFv libraries. Methods Mol Biol 1701:3 –24
Lim CC, Choong YS, Lim TS (2019) Cognizance of molecular methods for the generation of mutagenic phage display antibody libraries for affinity maturation. Int J Mol Sci 20:1861
de Wildt RMT, Mundy CR, Gorick BD, Tomlinson IM (2000) Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat Biotechnol 18:989 –994
Hayashi N, Welschof M, Zewe M, Braunagel M, Dubel S, Breitling F, Little M (1994) Simultaneous mutagenesis of antibody CDR regions by overlap extension and PCR. Biotechniques 17:310 , 312, 314–5
Erasmus MF, D’Angelo S, Ferrara F, Naranjo L, Teixeira AA, Buonpane R, Stewart SM, Nastri HG, Bradbury ARM (2021) A single donor is sufficient to produce a highly functional in vitro antibody library. Commun Biol 4:1 –16
Knappik A, Ge L, Honegger A, Pack P, Fischer M, Wellnhofer G, Hoess A, Wölle J, Plückthun A, Virnekäs B (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol 296:57 –86
Kumar R, Parray HA, Shrivastava T, Sinha S, Luthra K (2019) Phage display antibody libraries: a robust approach for generation of recombinant human monoclonal antibodies. Int J Biol Macromol 135:907 –918
Tiller T, Schuster I, Deppe D et al (2013) A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. MAbs 5:445
Zadeh AS, Grässer A, Dinter H, Hermes M, Schindowski K (2019) Efficient construction and effective screening of synthetic domain antibody libraries. Methods Protoc 2:1 –19
Acknowledgments
This work was supported by a Universiti Sains Malaysia, Special (Matching) Short-Term Grant with Project No: 304/CIPPM/6315708.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Nur, A. et al. (2023). Antibody Phage Display. In: Hust, M., Lim, T.S. (eds) Phage Display. Methods in Molecular Biology, vol 2702. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3381-6_1
Download citation
DOI: https://doi.org/10.1007/978-1-0716-3381-6_1
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-3380-9
Online ISBN: 978-1-0716-3381-6
eBook Packages: Springer Protocols