Skip to main content

mRNA Cancer Vaccines—Messages that Prevail

  • Chapter
  • First Online:
Cancer Vaccines

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 405))

Abstract

During the last decade, mRNA became increasingly recognized as a versatile tool for the development of new innovative therapeutics. Especially for vaccine development, mRNA is of outstanding interest and numerous clinical trials have been initiated. Strikingly, all of these studies have proven that large-scale GMP production of mRNA is feasible and concordantly report a favorable safety profile of mRNA vaccines. Induction of T-cell immunity is a multi-faceted process comprising antigen acquisition, antigen processing and presentation, as well as immune stimulation. The effectiveness of mRNA vaccines is critically dependent on making the antigen(s) of interest available to professional antigen-presenting cells, especially DCs. Efficient delivery of mRNA into DCs in vivo remains a major challenge in the mRNA vaccine field. This review summarizes the principles of mRNA vaccines and highlights the importance of in vivo mRNA delivery and recent advances in harnessing their therapeutic potential.

Authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738

    Article  CAS  PubMed  Google Scholar 

  • Anderson BR et al (2010) Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res 38:5884–5892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barreau C, Paillard L, Osborne HB (2005) AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 33:7138–7150

    Article  CAS  PubMed  Google Scholar 

  • Bonehill A et al (2003) Efficient presentation of known HLA class II-restricted MAGE-A3 epitopes by dendritic cells electroporated with messenger RNA encoding an invariant chain with genetic exchange of class II-associated invariant chain peptide. Cancer Res 63:5587–5594

    CAS  PubMed  Google Scholar 

  • Bonehill A et al (2004) Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. J Immunol 172:6649–6657

    Article  CAS  PubMed  Google Scholar 

  • Bonini C, Lee SP, Riddell SR, Greenberg PD (2001) Targeting antigen in mature dendritic cells for simultaneous stimulation of CD4+ and CD8+ T cells. J Immunol 166:5250–5257

    Article  CAS  PubMed  Google Scholar 

  • Broos K et al (2016) Particle-mediated intravenous delivery of antigen mRNA results in strong antigen-specific T-cell responses despite the induction of Type I interferon. Off J Am Soc Gene Cell Ther 38:1–11

    Google Scholar 

  • Canonico A, Plitman J, Conary J, Meyrick B, Brigham K (1994a) No lung toxicity after repeated aerosol or intravenous delivery of plasmid-cationic liposome complexes. J Appl Physiol 77:415–419

    CAS  PubMed  Google Scholar 

  • Canonico A, Conary J, Meyrick B, Brigham K (1994b) Aerosol and intravenous transfection of human alpha 1-antitrypsin gene to lungs of rabbits. Am J Respir Cell Mol Biol 10:24–29

    Article  CAS  PubMed  Google Scholar 

  • Carralot J-P et al (2004) Polarization of immunity induced by direct injection of naked sequence-stabilized mRNA vaccines. Cell Mol Life Sci 61:2418–2424

    Article  CAS  PubMed  Google Scholar 

  • Crook K, Stevenson BJ, Dubouchet M, Porteous DJ (1998) Inclusion of cholesterol in DOTAP transfection complexes increases the delivery of DNA to cells in vitro in the presence of serum. Gene Ther 5:137–143

    Article  CAS  PubMed  Google Scholar 

  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa, C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–1531

    Google Scholar 

  • Diken M et al (2011) Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther 18:702–708

    Article  CAS  PubMed  Google Scholar 

  • Diken M et al (2013) mTOR inhibition improves antitumor effects of vaccination with antigen-encoding RNA. Cancer Immunol Res 1:386–392

    Article  CAS  PubMed  Google Scholar 

  • Fang Z, Rajewsky N (2011) The impact of miRNA target sites in coding sequences and in 3’UTRs. PLoS ONE 6:e18067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farhood H, Serbina N, Huang L (1995) The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta 1235:289–295

    Article  PubMed  Google Scholar 

  • Felgner PL et al (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84:7413–7417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fotin-Mleczek M et al (2011) Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J Immunother 34:1–15

    Article  CAS  PubMed  Google Scholar 

  • Heil F et al (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529

    Article  CAS  PubMed  Google Scholar 

  • Hirota K, Terada H (2012) Endocytosis of particle formulations by macrophages and its application to clinical treatment

    Google Scholar 

  • Hoerr I, Obst R, Rammensee HG, Jung G (2000) In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 30:1–7

    Article  CAS  PubMed  Google Scholar 

  • Holtkamp S et al (2006) Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108:4009–4017

    Article  CAS  PubMed  Google Scholar 

  • Hornung V et al (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997

    Article  PubMed  Google Scholar 

  • Ishii KJ, Akira S (2005) TLR ignores methylated RNA? Immunity 23:111–113

    Article  CAS  PubMed  Google Scholar 

  • Karikó K, Ni H, Capodici J, Lamphier M, Weissman D (2004) mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 279:12542–12550

    Article  PubMed  Google Scholar 

  • Karikó K, Muramatsu H, Keller JM, Weissman D (2012) Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Ther 20:948–953

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim S-G et al (2008) Modification of CEA with both CRT and TAT PTD induces potent anti-tumor immune responses in RNA-pulsed DC vaccination. Vaccine 26:6433–6440

    Article  CAS  PubMed  Google Scholar 

  • Kowalczyk A et al (2016) Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity. Vaccine 34:3882–3893

    Article  CAS  PubMed  Google Scholar 

  • Kranz LM et al (2016) Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534:396–401

    Article  PubMed  Google Scholar 

  • Kreiter S et al (2007) Simultaneous ex vivo quantification of antigen-specific CD4+ and CD8+ T cell responses using in vitro transcribed RNA. Cancer Immunol Immunother 56:1577–1587

    Article  CAS  PubMed  Google Scholar 

  • Kreiter S et al (2008) Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. J Immunol 180:309–318

    Article  CAS  PubMed  Google Scholar 

  • Kreiter S et al (2010a) Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 70:9031–9040

    Article  CAS  PubMed  Google Scholar 

  • Kreiter S et al (2010b) Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 70:9031–9040

    Article  CAS  PubMed  Google Scholar 

  • Kreiter S et al (2011) FLT3 ligand enhances the cancer therapeutic potency of naked RNA vaccines. Cancer Res 71:6132–6142

    Article  CAS  PubMed  Google Scholar 

  • Kübler H et al (2015) Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. J Immunother Cancer 3:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhn A et al (2010) Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther 17:961–971

    Article  CAS  PubMed  Google Scholar 

  • Lai SK, Wang Y-Y, Hanes J (2009) Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 61:158–171

    Article  CAS  PubMed  Google Scholar 

  • Lee E et al (1996) Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung. Hum Gene Ther 7:1701–1717

    Article  CAS  PubMed  Google Scholar 

  • Li S, Rizzo MA, Bhattacharya S, Huang L (1998) Characterization of cationic lipid-protamine-DNA (LPD) complexes for intravenous gene delivery. Gene Ther 5:930–937

    Article  CAS  PubMed  Google Scholar 

  • Liu Y et al (1997) Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat Biotechnol 15:167–173

    Article  CAS  PubMed  Google Scholar 

  • Martinon F et al (1993) Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol 23:1719–1722

    Article  CAS  PubMed  Google Scholar 

  • Mauro VP, Chappell SA (2014) A critical analysis of codon optimization in human therapeutics. Trends Mol Med 20:604–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller H, Zhang J, Kuolee R, Patel GB, Chen W (2007) Intestinal M cells: the fallible sentinels? World J Gastroenterol 13:1477–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitragotri S, Burke PA, Langer R (2014) Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 13:655–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mockey M et al (2007) mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. Cancer Gene Ther 14:802–814

    Article  CAS  PubMed  Google Scholar 

  • Oberli MA et al (2016) Lipid nanoparticle–Assisted mRNA delivery for potent cancer immunotherapy. Nano Lett acs.nanolett.6b03329. doi:10.1021/acs.nanolett.6b03329

  • Pasquinelli AE, Dahlberg JE, Lund E (1995) Reverse 5′ caps in RNAs made in vitro by phage RNA polymerases. RNA 1:957–967

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perche F et al (2011) Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA. Nanomedicine 7:445–453

    Article  CAS  PubMed  Google Scholar 

  • Phua KKL (2015) Towards targeted delivery systems : Ligand conjugation strategies for mRNA nanoparticle tumor vaccines. J Immunol Res 2015

    Google Scholar 

  • Phua KKL, Leong KW, Nair SK (2013) Transfection efficiency and transgene expression kinetics of mRNA delivered in naked and nanoparticle format. J Control Release 166:227–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phua KKL, Nair SK, Leong KW (2014a) Messenger RNA (mRNA) nanoparticle tumour vaccination. Nanoscale 6:7715–7729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phua KKL, Staats HF, Leong KW, Nair SK (2014b) Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Sci Rep 4:5128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichlmair A et al (2009) Activation of MDA5 requires higher-order RNA structures generated during virus infection. J Virol 83:10761–10769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollard C et al (2013) Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol Ther 21:251–259

    Article  CAS  PubMed  Google Scholar 

  • Rajapaksa TE et al (2010) Intranasal M cell uptake of nanoparticles is independently influenced by targeting ligands and buffer ionic strength. J Biol Chem 285:23739–23746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rittig SM et al (2011) Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther 19:990–999

    Article  CAS  PubMed  Google Scholar 

  • Rittig SM et al (2016) Long-term survival correlates with immunological responses in renal cell carcinoma patients treated with mRNA-based immunotherapy. Oncoimmunology 5:e1108511

    Article  PubMed  Google Scholar 

  • Sahin U, Karikó K, Türeci Ö (2014) mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discov 13:759–780

    Article  CAS  PubMed  Google Scholar 

  • Saulquin X et al (2002) +1 Frameshifting as a novel mechanism to generate a cryptic cytotoxic T lymphocyte epitope derived from human interleukin 10. J Exp Med 195:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheel B et al (2004) Immunostimulating capacities of stabilized RNA molecules. Eur J Immunol 34:537–547

    Article  CAS  PubMed  Google Scholar 

  • Scheel B et al (2005) Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. Eur J Immunol 35:1557–1566

    Article  CAS  PubMed  Google Scholar 

  • Schlee M et al (2009) Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31:25–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwab SR, Li KC, Kang C, Shastri N (2003) Constitutive display of cryptic translation products by MHC class I molecules. Science 301:1367–1371

    Article  CAS  PubMed  Google Scholar 

  • Sebastian M et al (2011) Messenger RNA vaccination in NSCLC: findings from a phase I/IIa clinical trial. J Clin Oncol 29:2584

    Article  Google Scholar 

  • Selmi A et al (2016) Uptake of synthetic naked RNA by skin-resident dendritic cells via macropinocytosis allows antigen expression and induction of T-cell responses in mice. Cancer Immunol Immunother 65:1075–1083

    Article  CAS  PubMed  Google Scholar 

  • Stepinski J, Waddell C, Stolarski R, Darzynkiewicz E, Rhoads RE (2001) Synthesis and properties of mRNAs containing the novel ‘anti-reverse’ cap analogs 7-methyl(3′-O-methyl)GpppG and 7-methyl (3′-deoxy)GpppG. RNA 7:1486–1495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strenkowska M et al (2016) Cap analogs modified with 1,2-dithiodiphosphate moiety protect mRNA from decapping and enhance its translational potential. Nucleic Acids Res 44:9578–9590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su Z et al (2002) Enhanced induction of telomerase-specific CD4(+) T cells using dendritic cells transfected with RNA encoding a chimeric gene product. Cancer Res 62:5041–5048

    CAS  PubMed  Google Scholar 

  • Su X, Fricke J, Kavanagh DG, Irvine DJ (2011) In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. Mol Pharm 8:774–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tacken PJ, de Vries IJM, Torensma R, Figdor CG (2007) Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 7:790–802

    Article  CAS  PubMed  Google Scholar 

  • Tang DC, DeVit M, Johnston SA (1992) Genetic immunization is a simple method for eliciting an immune response. Nature 356:152–154

    Article  CAS  PubMed  Google Scholar 

  • Thess A et al (2015) Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol Ther. doi:10.1038/mt.2015.103

    PubMed  PubMed Central  Google Scholar 

  • Van der Jeught K et al (2014) Intratumoral administration of mRNA encoding a fusokine consisting of IFN-β and the ectodomain of the TGF-β receptor II potentiates antitumor immunity. Oncotarget 5:10100–10113

    Article  PubMed  PubMed Central  Google Scholar 

  • Van der Jeught K, Van Lint S, Thielemans K, Breckpot K (2015) Intratumoral delivery of mRNA: overcoming obstacles for effective immunotherapy. Oncoimmunology 4:e1005504

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Lint S et al (2012) Preclinical evaluation of TriMix and antigen mRNA-based antitumor therapy. Cancer Res 72:1661–1671

    Article  PubMed  Google Scholar 

  • Van Lint S et al (2016) Intratumoral delivery of TriMix mRNA results in T-cell activation by cross-presenting dendritic cells. Cancer Immunol Res 4:146–156

    Article  PubMed  Google Scholar 

  • Weide B et al (2008) Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J Immunother 31:180–188

    Article  CAS  PubMed  Google Scholar 

  • Weide B et al (2009) Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother 32:498–507

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama M, Fujita T (2007) Function of RIG-I-like receptors in antiviral innate immunity. J Biol Chem 282:15315–15318

    Article  CAS  PubMed  Google Scholar 

  • Zelphati O, Szoka FC (1996) Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci U S A 93:11493–11498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Huang L (1994) DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochim Biophys Acta 1189:195–203

    Article  CAS  PubMed  Google Scholar 

  • Züst R et al (2011) Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 12:137–143

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge helpful discussions with Katalin Karikó and Ugur Sahin.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Grunwitz or Lena M. Kranz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Grunwitz, C., Kranz, L.M. (2017). mRNA Cancer Vaccines—Messages that Prevail. In: Savelyeva, N., Ottensmeier, C. (eds) Cancer Vaccines. Current Topics in Microbiology and Immunology, vol 405. Springer, Cham. https://doi.org/10.1007/82_2017_509

Download citation

Publish with us

Policies and ethics