Skip to main content

P2X Receptor Activation

  • Chapter
  • First Online:
Protein Reviews

Part of the book series: Advances in Experimental Medicine and Biology ((PROTRE,volume 1051))

  • 2844 Accesses

Abstract

Extracellular ATP-gated P2X receptors are trimeric non-selective cation channels important for many physiological events including immune response and neural transmission. These receptors belong to a unique class of ligand-gated ion channels composed of only six transmembrane helices and a relatively small extracellular domain that harbors three ATP-binding pockets. The crystal structures of P2X receptors, including the recent P2X3 structures representing three different stages of the gating cycle, have provided a compelling structural foundation for understanding how this class of ligand-gated ion channels function. These structures, in combination with numerous functional studies ranging from classic mutagenesis and electrophysiology to modern optogenetic pharmacology, have uncovered unique molecular mechanisms of P2X receptor function. This review article summarizes the current knowledge in P2X receptor activation, especially focusing on the mechanisms underlying ATP-binding, conformational changes in the extracellular domain, and channel gating and desensitization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADP:

adenosine diphosphate

AMP:

adenosine monophosphate

ATP:

adenosine triphosphate

ATPγS:

Adenosine-5′-(γ-thio)-triphosphate

DF:

dorsal fin

hP2X2:

human P2X2 receptor

hP2X4:

human P2X4 receptor

LB:

lower body

LF:

left flipper

MTS:

methanethiosulfonate

RF:

right flipper

rP2X2:

rat P2X2 receptor

rP2X4:

rat P2X4 receptor

SCAM:

substituted cysteine accessibility method

TM:

transmembrane

UB:

upper body

VCF:

voltage clamp fluorometry

zfP2X4:

zebrafish P2X4 receptor

α,β-meATP:

(α,β-methylene)adenosine 5′-triphosphate

References

  • Allsopp RC, Evans RJ (2011) The intracellular amino terminus plays a dominant role in desensitization of ATP-gated P2X receptor ion channels. J Biol Chem 286(52):44691–44701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allsopp RC, El Ajouz S, Schmid R, Evans RJ (2011) Cysteine scanning mutagenesis (residues Glu52-Gly96) of the human P2X1 receptor for ATP: mapping agonist binding and channel gating. J Biol Chem 286(33):29207–29217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves LA, da Silva JH, Ferreira DN, Fidalgo-Neto AA, Teixeira PC, de Souza CA, Caffarena ER, de Freitas MS (2014) Structural and molecular modeling features of P2X receptors. Int J Mol Sci 15(3):4531–4549

    Article  PubMed  PubMed Central  Google Scholar 

  • Bean BP (1992) Pharmacology and electrophysiology of ATP-activated ion channels. Trends Pharmacol Sci 13(3):87–90

    Article  CAS  PubMed  Google Scholar 

  • Bhargava Y, Rettinger J, Mourot A (2012) Allosteric nature of P2X receptor activation probed by photoaffinity labelling. Br J Pharmacol 167(6):1301–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodnar M, Wang H, Riedel T, Hintze S, Kato E, Fallah G, Groger-Arndt H, Giniatullin R, Grohmann M, Hausmann R, Schmalzing G, Illes P, Rubini P (2011) Amino acid residues constituting the agonist binding site of the human P2X3 receptor. J Biol Chem 286(4):2739–2749

    Article  CAS  PubMed  Google Scholar 

  • Brake AJ, Wagenbach MJ, Julius D (1994) New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371(6497):519–523

    Article  CAS  PubMed  Google Scholar 

  • Brandle U, Spielmanns P, Osteroth R, Sim J, Surprenant A, Buell G, Ruppersberg JP, Plinkert PK, Zenner HP, Glowatzki E (1997) Desensitization of the P2X(2) receptor controlled by alternative splicing. FEBS Lett 404(2–3):294–298

    Article  CAS  PubMed  Google Scholar 

  • Browne LE, North RA (2013) P2X receptor intermediate activation states have altered nucleotide selectivity. J Neurosci 33(37):14801–14808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browne LE, Jiang LH, North RA (2010) New structure enlivens interest in P2X receptors. Trends Pharmacol Sci 31(5):229–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browne LE, Cao L, Broomhead HE, Bragg L, Wilkinson WJ, North RA (2011) P2X receptor channels show threefold symmetry in ionic charge selectivity and unitary conductance. Nat Neurosci 14(1):17–18

    Article  CAS  PubMed  Google Scholar 

  • Browne LE, Nunes JP, Sim JA, Chudasama V, Bragg L, Caddick S, North RA (2014) Optical control of trimeric P2X receptors and acid-sensing ion channels. Proc Natl Acad Sci U S A 111(1):521–526

    Google Scholar 

  • Cao L, Young MT, Broomhead HE, Fountain SJ, North RA (2007) Thr339-to-serine substitution in rat P2X2 receptor second transmembrane domain causes constitutive opening and indicates a gating role for Lys308. J Neurosci 27(47):12916–12923

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Broomhead HE, Young MT, North RA (2009) Polar residues in the second transmembrane domain of the rat P2X2 receptor that affect spontaneous gating, unitary conductance, and rectification. J Neurosci 29(45):14257–14264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caseley EA, Muench SP, Jiang LH (2017) Conformational changes during human P2X7 receptor activation examined by structural modelling and cysteine-based cross-linking studies. Purinergic Signal 13(1):135–141

    Article  CAS  PubMed  Google Scholar 

  • Cavarelli J, Eriani G, Rees B, Ruff M, Boeglin M, Mitschler A, Martin F, Gangloff J, Thierry JC, Moras D (1994) The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction. EMBO J 13(2):327–337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chataigneau T, Lemoine D, Grutter T (2013) Exploring the ATP-binding site of P2X receptors. Front Cell Neurosci 7:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen CC, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377(6548):428–431

    Article  CAS  PubMed  Google Scholar 

  • Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS (2011) Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 63(3):641–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding S, Sachs F (1999) Single channel properties of P2X2 purinoceptors. J Gen Physiol 113(5):695–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Dong H, Zhou HX (2012) Gating mechanism of a P2X4 receptor developed from normal mode analysis and molecular dynamics simulations. Proc Natl Acad Sci U S A 109(11):4140–4145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egan TM, Haines WR, Voigt MM (1998) A domain contributing to the ion channel of ATP-gated P2X2 receptors identified by the substituted cysteine accessibility method. J Neurosci 18(7):2350–2359

    CAS  PubMed  Google Scholar 

  • Ennion S, Hagan S, Evans RJ (2000) The role of positively charged amino acids in ATP recognition by human P2X1 receptors. J Biol Chem 275(45):35656

    CAS  PubMed  Google Scholar 

  • Fischer W, Zadori Z, Kullnick Y, Groger-Arndt H, Franke H, Wirkner K, Illes P, Mager PP (2007) Conserved lysin and arginin residues in the extracellular loop of P2X(3) receptors are involved in agonist binding. Eur J Pharmacol 576(1–3):7–17

    Article  CAS  PubMed  Google Scholar 

  • Fountain SJ, North RA (2006) A C-terminal lysine that controls human P2X4 receptor desensitization. J Biol Chem 281(22):15044–15049

    Article  CAS  PubMed  Google Scholar 

  • Friel DD (1988) An ATP-sensitive conductance in single smooth muscle cells from the rat vas deferens. J Physiol 401:361–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fryatt AG, Dayl S, Cullis PM, Schmid R, Evans RJ (2016) Mechanistic insights from resolving ligand-dependent kinetics of conformational changes at ATP-gated P2X1R ion channels. Sci Rep 6:32918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao C, Yu Q, Xu H, Zhang L, Liu J, Jie Y, Ma W, Samways DS, Li Z (2015) Roles of the lateral fenestration residues of the P2X(4) receptor that contribute to the channel function and the deactivation effect of ivermectin. Purinergic Signal 11(2):229–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habermacher C, Dunning K, Chataigneau T, Grutter T (2016a) Molecular structure and function of P2X receptors. Neuropharmacology 104:18–30

    Article  CAS  PubMed  Google Scholar 

  • Habermacher C, Martz A, Calimet N, Lemoine D, Peverini L, Specht A, Cecchini M, Grutter T (2016b) Photo-switchable tweezers illuminate pore-opening motions of an ATP-gated P2X ion channel. elife 5:e11050

    Article  PubMed  PubMed Central  Google Scholar 

  • Haines WR, Torres GE, Voigt MM, Egan TM (1999) Properties of the novel ATP-gated ionotropic receptor composed of the P2X(1) and P2X(5) isoforms. Mol Pharmacol 56(4):720–727

    CAS  PubMed  Google Scholar 

  • Hattori M, Gouaux E (2012) Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 485(7397):207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hausmann R, Gunther J, Kless A, Kuhlmann D, Kassack MU, Bahrenberg G, Markwardt F, Schmalzing G (2013) Salt bridge switching from Arg290/Glu167 to Arg290/ATP promotes the closed-to-open transition of the P2X2 receptor. Mol Pharmacol 83(1):73–84

    Article  CAS  PubMed  Google Scholar 

  • Hausmann R, Bahrenberg G, Kuhlmann D, Schumacher M, Braam U, Bieler D, Schlusche I, Schmalzing G (2014) A hydrophobic residue in position 15 of the rP2X3 receptor slows desensitization and reveals properties beneficial for pharmacological analysis and high-throughput screening. Neuropharmacology 79:603–615

    Article  CAS  PubMed  Google Scholar 

  • Hausmann R, Kless A, Schmalzing G (2015) Key sites for P2X receptor function and multimerization: overview of mutagenesis studies on a structural basis. Curr Med Chem 22(7):799–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heymann G, Dai J, Li M, Silberberg SD, Zhou HX, Swartz KJ (2013) Inter- and intrasubunit interactions between transmembrane helices in the open state of P2X receptor channels. Proc Natl Acad Sci U S A 110(42):E4045–E4054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopfner KP (2016) Invited review: architectures and mechanisms of ATP binding cassette proteins. Biopolymers 105(8):492–504

    Article  CAS  PubMed  Google Scholar 

  • Huang LD, Fan YZ, Tian Y, Yang Y, Liu Y, Wang J, Zhao WS, Zhou WC, Cheng XY, Cao P, Lu XY, Yu Y (2014) Inherent dynamics of head domain correlates with ATP-recognition of P2X4 receptors: insights gained from molecular simulations. PLoS One 9(5):e97528

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang LH, Rassendren F, Surprenant A, North RA (2000) Identification of amino acid residues contributing to the ATP-binding site of a purinergic P2X receptor. J Biol Chem 275(44):34190–34196

    Article  CAS  PubMed  Google Scholar 

  • Jiang LH, Rassendren F, Spelta V, Surprenant A, North RA (2001) Amino acid residues involved in gating identified in the first membrane-spanning domain of the rat P2X(2) receptor. J Biol Chem 276(18):14902–14908

    Article  CAS  PubMed  Google Scholar 

  • Jiang LH, Kim M, Spelta V, Bo X, Surprenant A, North RA (2003) Subunit arrangement in P2X receptors. J Neurosci 23(26):8903–8910

    CAS  PubMed  Google Scholar 

  • Jiang R, Martz A, Gonin S, Taly A, de Carvalho LP, Grutter T (2010) A putative extracellular salt bridge at the subunit interface contributes to the ion channel function of the ATP-gated P2X2 receptor. J Biol Chem 285(21):15805–15815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang R, Lemoine D, Martz A, Taly A, Gonin S, Prado de Carvalho L, Specht A, Grutter T (2011) Agonist trapped in ATP-binding sites of the P2X2 receptor. Proc Natl Acad Sci U S A 108(22):9066–9071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang R, Taly A, Lemoine D, Martz A, Cunrath O, Grutter T (2012a) Tightening of the ATP-binding sites induces the opening of P2X receptor channels. EMBO J 31(9):2134–2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang R, Taly A, Lemoine D, Martz A, Specht A, Grutter T (2012b) Intermediate closed channel state(s) precede(s) activation in the ATP-gated P2X2 receptor. Channels (Austin) 6(5):398–402

    Article  CAS  Google Scholar 

  • Kaczmarek-Hajek K, Lorinczi E, Hausmann R, Nicke A (2012) Molecular and functional properties of P2X receptors–recent progress and persisting challenges. Purinergic Signal 8(3):375–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karasawa A, Kawate T (2016) Structural basis for subtype-specific inhibition of the P2X7 receptor. eLife 5

    Google Scholar 

  • Kasuya G, Fujiwara Y, Takemoto M, Dohmae N, Nakada-Nakura Y, Ishitani R, Hattori M, Nureki O (2016) Structural insights into divalent cation modulations of ATP-gated P2X receptor channels. Cell Rep 14(4):932–944

    Article  CAS  PubMed  Google Scholar 

  • Kawate T, Michel JC, Birdsong WT, Gouaux E (2009) Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 460(7255):592–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawate T, Robertson JL, Li M, Silberberg SD, Swartz KJ (2011) Ion access pathway to the transmembrane pore in P2X receptor channels. J Gen Physiol 137(6):579–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khadra A, Yan Z, Coddou C, Tomic M, Sherman A, Stojilkovic SS (2012) Gating properties of the P2X2a and P2X2b receptor channels: experiments and mathematical modeling. J Gen Physiol 139(5):333–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koshimizu T, Tomic M, Koshimizu M, Stojilkovic SS (1998) Identification of amino acid residues contributing to desensitization of the P2X2 receptor channel. J Biol Chem 273(21):12853–12857

    Article  CAS  PubMed  Google Scholar 

  • Koshimizu T, Koshimizu M, Stojilkovic SS (1999) Contributions of the C-terminal domain to the control of P2X receptor desensitization. J Biol Chem 274(53):37651–37657

    Article  CAS  PubMed  Google Scholar 

  • Kowalski M, Hausmann R, Dopychai A, Grohmann M, Franke H, Nieber K, Schmalzing G, Illes P, Riedel T (2014) Conformational flexibility of the agonist binding jaw of the human P2X3 receptor is a prerequisite for channel opening. Br J Pharmacol 171(22):5093–5112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kracun S, Chaptal V, Abramson J, Khakh BS (2010) Gated access to the pore of a P2X receptor: structural implications for closed-open transitions. J Biol Chem 285(13):10110–10121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le KT, Boue-Grabot E, Archambault V, Seguela P (1999) Functional and biochemical evidence for heteromeric ATP-gated channels composed of P2X1 and P2X5 subunits. J Biol Chem 274(22):15415–15419

    Article  CAS  PubMed  Google Scholar 

  • Lemoine D, Habermacher C, Martz A, Mery PF, Bouquier N, Diverchy F, Taly A, Rassendren F, Specht A, Grutter T (2013) Optical control of an ion channel gate. Proc Natl Acad Sci U S A 110(51):20813–20818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Chang TH, Silberberg SD, Swartz KJ (2008) Gating the pore of P2X receptor channels. Nat Neurosci 11(8):883–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Kawate T, Silberberg SD, Swartz KJ (2010) Pore-opening mechanism in trimeric P2X receptor channels. Nat Commun 1:44

    PubMed  Google Scholar 

  • Li M, Silberberg SD, Swartz KJ (2013) Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+. Proc Natl Acad Sci U S A 110(36):E3455–E3463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang X, Xu H, Li C, Yin S, Xu T, Liu J, Li Z (2013) Functional identification of close proximity amino acid side chains within the transmembrane-spanning helixes of the P2X2 receptor. PLoS One 8(8):e70629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorinczi E, Bhargava Y, Marino SF, Taly A, Kaczmarek-Hajek K, Barrantes-Freer A, Dutertre S, Grutter T, Rettinger J, Nicke A (2012) Involvement of the cysteine-rich head domain in activation and desensitization of the P2X1 receptor. Proc Natl Acad Sci U S A 109(28):11396–11401

    Article  PubMed  PubMed Central  Google Scholar 

  • Mansoor SE, Lu W, Oosterheert W, Shekhar M, Tajkhorshid E, Gouaux E (2016) X-ray structures define human P2X3 receptor gating cycle and antagonist action. Nature 538(7623):66–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateja A, Paduch M, Chang HY, Szydlowska A, Kossiakoff AA, Hegde RS, Keenan RJ (2015) Protein targeting. Structure of the Get3 targeting factor in complex with its membrane protein cargo. Science 347(6226):1152–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migita K, Haines WR, Voigt MM, Egan TM (2001) Polar residues of the second transmembrane domain influence cation permeability of the ATP-gated P2X(2) receptor. J Biol Chem 276(33):30934–30941

    Article  CAS  PubMed  Google Scholar 

  • Moffatt L, Hume RI (2007) Responses of rat P2X2 receptors to ultrashort pulses of ATP provide insights into ATP binding and channel gating. J Gen Physiol 130(2):183–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • North RA, Surprenant A (2000) Pharmacology of cloned P2X receptors. Annu Rev Pharmacol Toxicol 40:563–580

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan WJ, Perrin DD (1964) The stability constants of metal-adenine nucleotide complexes. Biochemistry 3:18–26

    Article  PubMed  Google Scholar 

  • Pierdominici-Sottile G, Moffatt L, Palma J (2016) The dynamic behavior of the P2X4 ion channel in the closed conformation. Biophys J 111(12):2642–2650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pintor J, Diaz-Hernandez M, Gualix J, Gomez-Villafuertes R, Hernando F, Miras-Portugal MT (2000) Diadenosine polyphosphate receptors. from rat and guinea-pig brain to human nervous system. Pharmacol Ther 87(2–3):103–115

    Article  CAS  PubMed  Google Scholar 

  • Pippel A, Stolz M, Woltersdorf R, Kless A, Schmalzing G, Markwardt F (2017) Localization of the gate and selectivity filter of the full-length P2X7 receptor. Proc Natl Acad Sci U S A 114(11):E2156–E2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rassendren F, Buell G, Newbolt A, North RA, Surprenant A (1997) Identification of amino acid residues contributing to the pore of a P2X receptor. EMBO J 16(12):3446–3454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts JA, Evans RJ (2007) Cysteine substitution mutants give structural insight and identify ATP binding and activation sites at P2X receptors. J Neurosci 27(15):4072–4082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts JA, Digby HR, Kara M, El Ajouz S, Sutcliffe MJ, Evans RJ (2008) Cysteine substitution mutagenesis and the effects of methanethiosulfonate reagents at P2X2 and P2X4 receptors support a core common mode of ATP action at P2X receptors. J Biol Chem 283(29):20126–20136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts JA, Valente M, Allsopp RC, Watt D, Evans RJ (2009) Contribution of the region Glu181 to Val200 of the extracellular loop of the human P2X1 receptor to agonist binding and gating revealed using cysteine scanning mutagenesis. J Neurochem 109(4):1042–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts JA, Allsopp RC, El Ajouz S, Vial C, Schmid R, Young MT, Evans RJ (2012) Agonist binding evokes extensive conformational changes in the extracellular domain of the ATP-gated human P2X1 receptor ion channel. Proc Natl Acad Sci U S A 109(12):4663–4667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rokic MB, Stojilkovic SS, Vavra V, Kuzyk P, Tvrdonova V, Zemkova H (2013) Multiple roles of the extracellular vestibule amino acid residues in the function of the rat P2X4 receptor. PLoS One 8(3):e59411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rokic MB, Stojilkovic SS, Zemkova H (2014) Structural and functional properties of the rat P2X4 purinoreceptor extracellular vestibule during gating. Front Cell Neurosci 8:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Rothwell SW, Stansfeld PJ, Bragg L, Verkhratsky A, North RA (2014) Direct gating of ATP-activated ion channels (P2X2 receptors) by lipophilic attachment at the outer end of the second transmembrane domain. J Biol Chem 289(2):618–626

    Article  CAS  PubMed  Google Scholar 

  • Samways DS, Khakh BS, Dutertre S, Egan TM (2011) Preferential use of unobstructed lateral portals as the access route to the pore of human ATP-gated ion channels (P2X receptors). Proc Natl Acad Sci U S A 108(33):13800–13805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrödinger LLC (2015) The PyMOL molecular graphics system, Version 1.8

    Google Scholar 

  • Seguela P, Haghighi A, Soghomonian JJ, Cooper E (1996) A novel neuronal P2x ATP receptor ion channel with widespread distribution in the brain. J Neurosci 16(2):448–455

    CAS  PubMed  Google Scholar 

  • Silberberg SD, Chang TH, Swartz KJ (2005) Secondary structure and gating rearrangements of transmembrane segments in rat P2X4 receptor channels. J Gen Physiol 125(4):347–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silberberg SD, Li M, Swartz KJ (2007) Ivermectin interaction with transmembrane helices reveals widespread rearrangements during opening of P2X receptor channels. Neuron 54(2):263–274

    Article  CAS  PubMed  Google Scholar 

  • Simon J, Kidd EJ, Smith FM, Chessell IP, Murrell-Lagnado R, Humphrey PP, Barnard EA (1997) Localization and functional expression of splice variants of the P2X2 receptor. Mol Pharmacol 52(2):237–248

    CAS  PubMed  Google Scholar 

  • Smith FM, Humphrey PP, Murrell-Lagnado RD (1999) Identification of amino acids within the P2X2 receptor C-terminus that regulate desensitization. J Physiol 520(Pt 1):91–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto F, Garcia-Guzman M, Gomez-Hernandez JM, Hollmann M, Karschin C, Stuhmer W (1996) P2X4: an ATP-activated ionotropic receptor cloned from rat brain. Proc Natl Acad Sci U S A 93(8):3684–3688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stelmashenko O, Lalo U, Yang Y, Bragg L, North RA, Compan V (2012) Activation of trimeric P2X2 receptors by fewer than three ATP molecules. Mol Pharmacol 82(4):760–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stelmashenko O, Compan V, Browne LE, North RA (2014) Ectodomain movements of an ATP-gated ion channel (P2X2 receptor) probed by disulfide locking. J Biol Chem 289(14):9909–9917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephan G, Kowalski-Jahn M, Zens C, Schmalzing G, Illes P, Hausmann R (2016) Inter-subunit disulfide locking of the human P2X3 receptor elucidates ectodomain movements associated with channel gating. Purinergic Signal 12(2):221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272(5262):735–738

    Article  CAS  PubMed  Google Scholar 

  • Torres GE, Haines WR, Egan TM, Voigt MM (1998) Co-expression of P2X1 and P2X5 receptor subunits reveals a novel ATP-gated ion channel. Mol Pharmacol 54(6):989–993

    CAS  PubMed  Google Scholar 

  • Ugur M, Drummond RM, Zou H, Sheng P, Singer JJ, Walsh JV Jr (1997) An ATP-gated cation channel with some P2Z-like characteristics in gastric smooth muscle cells of toad. J Physiol 498(Pt 2):427–442

    Google Scholar 

  • Valera S, Hussy N, Evans RJ, Adami N, North RA, Surprenant A, Buell G (1994) A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP. Nature 371(6497):516–519

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yu Y (2016) Insights into the channel gating of P2X receptors from structures, dynamics and small molecules. Acta Pharmacol Sin 37(1):44–55

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkinson WJ, Jiang LH, Surprenant A, North RA (2006) Role of ectodomain lysines in the subunits of the heteromeric P2X2/3 receptor. Mol Pharmacol 70(4):1159–1163

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Liang Z, Obsil T, Stojilkovic SS (2006) Participation of the Lys313-Ile333 sequence of the purinergic P2X4 receptor in agonist binding and transduction of signals to the channel gate. J Biol Chem 281(43):32649–32659

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Khadra A, Li S, Tomic M, Sherman A, Stojilkovic SS (2010) Experimental characterization and mathematical modeling of P2X7 receptor channel gating. J Neurosci 30(42):14213–14224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young MT (2010) P2X receptors: dawn of the post-structure era. Trends Biochem Sci 35(2):83–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemkova H, Yan Z, Liang Z, Jelinkova I, Tomic M, Stojilkovic SS (2007) Role of aromatic and charged ectodomain residues in the P2X(4) receptor functions. J Neurochem 102(4):1139–1150

    Article  CAS  PubMed  Google Scholar 

  • Zhao WS, Wang J, Ma XJ, Yang Y, Liu Y, Huang LD, Fan YZ, Cheng XY, Chen HZ, Wang R, Yu Y (2014) Relative motions between left flipper and dorsal fin domains favour P2X4 receptor activation. Nat Commun 5:4189

    CAS  PubMed  Google Scholar 

  • Zhao WS, Sun MY, Sun LF, Liu Y, Yang Y, Huang LD, Fan YZ, Cheng XY, Cao P, Hu YM, Li L, Tian Y, Wang R, Yu Y (2016) A highly conserved salt bridge stabilizes the kinked conformation of β2,3-sheet essential for channel function of P2X4 receptors. J Biol Chem 291(15):7990–8003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

I thank Kevin Michalski, Phillip Nguyen, and Akira Karasawa for helpful discussions. I am also grateful to Cindy Westmiller for helpful comments on the article. T.K. is supported by the National Institutes of Health (GM114379).

Conflicts of Interest

The author declares that I have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshimitsu Kawate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kawate, T. (2017). P2X Receptor Activation. In: Atassi, M. (eds) Protein Reviews. Advances in Experimental Medicine and Biology(), vol 1051. Springer, Singapore. https://doi.org/10.1007/5584_2017_55

Download citation

Publish with us

Policies and ethics