The Place Autocomplete service is a web service that returns place predictions in response to an HTTP request. The request specifies a textual search string and optional geographic bounds. The service can be used to provide autocomplete functionality for text-based geographic searches, by returning places such as businesses, addresses and points of interest as a user types.
Place Autocomplete requests
The Place Autocomplete service is part of the Places API and shares an API key and quotas with the Places API.
The Place Autocomplete service can match on full words and substrings, resolving place names, addresses, and plus codes. Applications can therefore send queries as the user types, to provide on-the-fly place predictions.
You must properly format plus codes. This means you must URL-escape the plus sign to
%2B
, and you must URL-escape spaces to %20
.
- global code is a four character area code, and six character or longer
local code. For example, the URL-escape global code
849VCWC8+R9
is849VCWC8%2BR9
. - compound code is a six character (or longer) local code with an
explicit location. For example, the URL-escaped compound code
CWC8+R9 Mountain View, CA, USA
isCWC8%2BR9%20Mountain%20View%20CA%20USA
.
The returned predictions are designed to be presented to the user to aid them in selecting the place they want. You can send a Place Details request for more information about any of the places which are returned.
A Place Autocomplete request is an HTTP URL of the following form:
https://maps.googleapis.com/maps/api/place/autocomplete/output?parameters
where output
may be either of the following values:
json
(recommended) indicates output in JavaScript Object Notation (JSON)xml
indicates output as XML
Certain parameters are required to initiate a Place Autocomplete request.
As is standard in URLs, all parameters are separated using the ampersand
(&
) character. The list of parameters and their possible
values are enumerated below.
Required parameters
input
The text string on which to search. The Place Autocomplete service will return candidate matches based on this string and order results based on their perceived relevance.
Optional parameters
components
A grouping of places to which you would like to restrict your results. Currently, you can use components to filter by up to 5 countries. Countries must be passed as a two character, ISO 3166-1 Alpha-2 compatible country code. For example:
components=country:fr
would restrict your results to places within France. Multiple countries must be passed as multiplecountry:XX
filters, with the pipe character|
as a separator. For example:components=country:us|country:pr|country:vi|country:gu|country:mp
would restrict your results to places within the United States and its unincorporated organized territories.Note: If you receive unexpected results with a country code, verify that you are using a code which includes the countries, dependent territories, and special areas of geographical interest you intend. You can find code information at Wikipedia: List of ISO 3166 country codes or the ISO Online Browsing Platform.language
The language in which to return results.
- See the list of supported languages. Google often updates the supported languages, so this list may not be exhaustive.
-
If
language
is not supplied, the API attempts to use the preferred language as specified in theAccept-Language
header. - The API does its best to provide a street address that is readable for both the user and locals. To achieve that goal, it returns street addresses in the local language, transliterated to a script readable by the user if necessary, observing the preferred language. All other addresses are returned in the preferred language. Address components are all returned in the same language, which is chosen from the first component.
- If a name is not available in the preferred language, the API uses the closest match.
- The preferred language has a small influence on the set of results that the API chooses to return, and the order in which they are returned. The geocoder interprets abbreviations differently depending on language, such as the abbreviations for street types, or synonyms that may be valid in one language but not in another. For example, utca and tér are synonyms for street in Hungarian.
location
The point around which to retrieve place information. This must be specified as
latitude,longitude
. Theradius
parameter must also be provided when specifying a location. Ifradius
is not provided, thelocation
parameter is ignored.When using the Text Search API, the `location` parameter may be overriden if the `query` contains an explicit location such as `Market in Barcelona`.locationbias
Prefer results in a specified area, by specifying either a radius plus lat/lng, or two lat/lng pairs representing the points of a rectangle. If this parameter is not specified, the API uses IP address biasing by default.
-
IP bias: Instructs the API to use IP address biasing. Pass the string
ipbias
(this option has no additional parameters). -
Circular: A string specifying radius in meters, plus lat/lng in decimal
degrees. Use the following format:
circle:radius@lat,lng
. -
Rectangular: A string specifying two lat/lng pairs in decimal degrees,
representing the south/west and north/east points of a rectangle. Use
the following format:
rectangle:south,west|north,east
. Note that east/west values are wrapped to the range -180, 180, and north/south values are clamped to the range -90, 90.
-
IP bias: Instructs the API to use IP address biasing. Pass the string
locationrestriction
Restrict results to a specified area, by specifying either a radius plus lat/lng, or two lat/lng pairs representing the points of a rectangle.
-
Circular: A string specifying radius in meters, plus lat/lng in decimal
degrees. Use the following format:
circle:radius@lat,lng
. -
Rectangular: A string specifying two lat/lng pairs in decimal degrees,
representing the south/west and north/east points of a rectangle. Use
the following format:
rectangle:south,west|north,east
. Note that east/west values are wrapped to the range -180, 180, and north/south values are clamped to the range -90, 90.
-
Circular: A string specifying radius in meters, plus lat/lng in decimal
degrees. Use the following format:
offset
The position, in the input term, of the last character that the service uses to match predictions. For example, if the input is
Google
and the offset is 3, the service will match onGoo
. The string determined by the offset is matched against the first word in the input term only. For example, if the input term isGoogle abc
and the offset is 3, the service will attempt to match againstGoo abc
. If no offset is supplied, the service will use the whole term. The offset should generally be set to the position of the text caret.origin
The origin point from which to calculate straight-line distance to the destination (returned as
distance_meters
). If this value is omitted, straight-line distance will not be returned. Must be specified aslatitude,longitude
.radius
Defines the distance (in meters) within which to return place results. You may bias results to a specified circle by passing a
location
and aradius
parameter. Doing so instructs the Places service to prefer showing results within that circle; results outside of the defined area may still be displayed.The radius will automatically be clamped to a maximum value depending on the type of search and other parameters.
- Autocomplete: 50,000 meters
-
Nearby Search:
- with
keyword
orname
: 50,000 meters -
without
keyword
orname
-
Up to 50,000 meters, adjusted dynamically based on area density,
independent of
rankby
parameter. -
When using
rankby=distance
, the radius parameter will not be accepted, and will result in anINVALID_REQUEST
.
-
Up to 50,000 meters, adjusted dynamically based on area density,
independent of
- with
- Query Autocomplete: 50,000 meters
- Text Search: 50,000 meters
region
The region code, specified as a ccTLD ("top-level domain") two-character value. Most ccTLD codes are identical to ISO 3166-1 codes, with some notable exceptions. For example, the United Kingdom's ccTLD is "uk" (.co.uk) while its ISO 3166-1 code is "gb" (technically for the entity of "The United Kingdom of Great Britain and Northern Ireland").
sessiontoken
A random string which identifies an autocomplete session for billing purposes.
The session begins when the user starts typing a query, and concludes when they select a place and a call to Place Details is made. Each session can have multiple queries, followed by one place selection. The API key(s) used for each request within a session must belong to the same Google Cloud Console project. Once a session has concluded, the token is no longer valid; your app must generate a fresh token for each session. If the
sessiontoken
parameter is omitted, or if you reuse a session token, the session is charged as if no session token was provided (each request is billed separately).We recommend the following guidelines:
- Use session tokens for all autocomplete sessions.
- Generate a fresh token for each session. Using a version 4 UUID is recommended.
- Ensure that the API key(s) used for all Place Autocomplete and Place Details requests within a session belong to the same Cloud Console project.
- Be sure to pass a unique session token for each new session. Using the same token for more than one session will result in each request being billed individually.
strictbounds
Returns only those places that are strictly within the region defined by
location
andradius
. This is a restriction, rather than a bias, meaning that results outside this region will not be returned even if they match the user input.types
You can restrict results from a Place Autocomplete request to be of a certain type by passing the
types
parameter. This parameter specifies a type or a type collection, as listed in Place Types. If nothing is specified, all types are returned.A place can only have a single primary type from types listed in Table 1 or Table 2. For example, a hotel where food is served may by returned only with
types=lodging
and not withtypes=restaurant
.For the value of the
types
parameter you can specify either:Up to five values from Table 1 or Table 2. For multiple values, separate each value with a
|
(vertical bar). For example:types=book_store|cafe
Any single supported filter in Table 3. You cannot mix type collections.
The request will be rejected with an
INVALID_REQUEST
error if:
Place Autocomplete examples
A request for establishments containing the string "Amoeba" within an area centered in San Francisco, CA:
URL
https://maps.googleapis.com/maps/api/place/autocomplete/json ?input=amoeba &location=37.76999%2C-122.44696 &radius=500 &types=establishment &key=YOUR_API_KEY
cURL
curl -L -X GET 'https://maps.googleapis.com/maps/api/place/autocomplete/json?input=amoeba&types=establishment&location=37.76999%2C-122.44696&radius=500&key=YOUR_API_KEY'
The same request, restricted to results within 500 meters of Ashbury St & Haight St, San Francisco:
URL
https://maps.googleapis.com/maps/api/place/autocomplete/json ?input=amoeba &location=37.76999%2C-122.44696 &radius=500 &strictbounds=true &types=establishment &key=YOUR_API_KEY
cURL
curl -L -X GET 'https://maps.googleapis.com/maps/api/place/autocomplete/json?input=amoeba&types=establishment&location=37.76999%2C-122.44696&radius=500&strictbounds=true&key=YOUR_API_KEY'
A request for addresses containing "Vict" with results in French:
URL
https://maps.googleapis.com/maps/api/place/autocomplete/json ?input=Vict &language=fr &types=geocode &key=YOUR_API_KEY
cURL
curl -L -X GET 'https://maps.googleapis.com/maps/api/place/autocomplete/json?input=Vict&types=geocode&language=fr&key=YOUR_API_KEY'
A request for cities containing "Vict" with results in Brazilian Portuguese:
URL
https://maps.googleapis.com/maps/api/place/autocomplete/json ?input=Vict &language=pt_BR &types=%28cities%29 &key=YOUR_API_KEY
cURL
curl -L -X GET 'https://maps.googleapis.com/maps/api/place/autocomplete/json?input=Vict&types=(cities)&language=pt_BR&key=YOUR_API_KEY'
Note that you'll need to replace the API key in these examples with your own key.
Place Autocomplete response
Place Autocomplete responses are returned in the format indicated by the
output
flag within the request's URL path. The results below are
indicative of what may be returned for a query with the following
parameters:
URL
https://maps.googleapis.com/maps/api/place/autocomplete/json ?input=Paris &types=geocode &key=YOUR_API_KEY
cURL
curl -L -X GET 'https://maps.googleapis.com/maps/api/place/autocomplete/json?input=Paris&types=geocode&key=YOUR_API_KEY'
JSON
{ "predictions": [ { "description": "Paris, France", "matched_substrings": [{ "length": 5, "offset": 0 }], "place_id": "ChIJD7fiBh9u5kcRYJSMaMOCCwQ", "reference": "ChIJD7fiBh9u5kcRYJSMaMOCCwQ", "structured_formatting": { "main_text": "Paris", "main_text_matched_substrings": [{ "length": 5, "offset": 0 }], "secondary_text": "France", }, "terms": [ { "offset": 0, "value": "Paris" }, { "offset": 7, "value": "France" }, ], "types": ["locality", "political", "geocode"], }, { "description": "Paris, TX, USA", "matched_substrings": [{ "length": 5, "offset": 0 }], "place_id": "ChIJmysnFgZYSoYRSfPTL2YJuck", "reference": "ChIJmysnFgZYSoYRSfPTL2YJuck", "structured_formatting": { "main_text": "Paris", "main_text_matched_substrings": [{ "length": 5, "offset": 0 }], "secondary_text": "TX, USA", }, "terms": [ { "offset": 0, "value": "Paris" }, { "offset": 7, "value": "TX" }, { "offset": 11, "value": "USA" }, ], "types": ["locality", "political", "geocode"], }, { "description": "Paris, TN, USA", "matched_substrings": [{ "length": 5, "offset": 0 }], "place_id": "ChIJ4zHP-Sije4gRBDEsVxunOWg", "reference": "ChIJ4zHP-Sije4gRBDEsVxunOWg", "structured_formatting": { "main_text": "Paris", "main_text_matched_substrings": [{ "length": 5, "offset": 0 }], "secondary_text": "TN, USA", }, "terms": [ { "offset": 0, "value": "Paris" }, { "offset": 7, "value": "TN" }, { "offset": 11, "value": "USA" }, ], "types": ["locality", "political", "geocode"], }, { "description": "Paris, Brant, ON, Canada", "matched_substrings": [{ "length": 5, "offset": 0 }], "place_id": "ChIJsamfQbVtLIgR-X18G75Hyi0", "reference": "ChIJsamfQbVtLIgR-X18G75Hyi0", "structured_formatting": { "main_text": "Paris", "main_text_matched_substrings": [{ "length": 5, "offset": 0 }], "secondary_text": "Brant, ON, Canada", }, "terms": [ { "offset": 0, "value": "Paris" }, { "offset": 7, "value": "Brant" }, { "offset": 14, "value": "ON" }, { "offset": 18, "value": "Canada" }, ], "types": ["neighborhood", "political", "geocode"], }, { "description": "Paris, KY, USA", "matched_substrings": [{ "length": 5, "offset": 0 }], "place_id": "ChIJsU7_xMfKQ4gReI89RJn0-RQ", "reference": "ChIJsU7_xMfKQ4gReI89RJn0-RQ", "structured_formatting": { "main_text": "Paris", "main_text_matched_substrings": [{ "length": 5, "offset": 0 }], "secondary_text": "KY, USA", }, "terms": [ { "offset": 0, "value": "Paris" }, { "offset": 7, "value": "KY" }, { "offset": 11, "value": "USA" }, ], "types": ["locality", "political", "geocode"], }, ], "status": "OK", }
XML
<AutocompletionResponse> <status>OK</status> <prediction> <description>Paris, France</description> <type>locality</type> <type>political</type> <type>geocode</type> <reference>ChIJD7fiBh9u5kcRYJSMaMOCCwQ</reference> <term> <value>Paris</value> <offset>0</offset> </term> <term> <value>France</value> <offset>7</offset> </term> <matched_substring> <offset>0</offset> <length>5</length> </matched_substring> <place_id>ChIJD7fiBh9u5kcRYJSMaMOCCwQ</place_id> <structured_formatting> <description>Paris</description> <subdescription>France</subdescription> <description_matched_substring> <offset>0</offset> <length>5</length> </description_matched_substring> </structured_formatting> </prediction> <prediction> <description>Paris, TX, USA</description> <type>locality</type> <type>political</type> <type>geocode</type> <reference>ChIJmysnFgZYSoYRSfPTL2YJuck</reference> <term> <value>Paris</value> <offset>0</offset> </term> <term> <value>TX</value> <offset>7</offset> </term> <term> <value>USA</value> <offset>11</offset> </term> <matched_substring> <offset>0</offset> <length>5</length> </matched_substring> <place_id>ChIJmysnFgZYSoYRSfPTL2YJuck</place_id> <structured_formatting> <description>Paris</description> <subdescription>TX, USA</subdescription> <description_matched_substring> <offset>0</offset> <length>5</length> </description_matched_substring> </structured_formatting> </prediction> <prediction> <description>Paris, TN, USA</description> <type>locality</type> <type>political</type> <type>geocode</type> <reference>ChIJ4zHP-Sije4gRBDEsVxunOWg</reference> <term> <value>Paris</value> <offset>0</offset> </term> <term> <value>TN</value> <offset>7</offset> </term> <term> <value>USA</value> <offset>11</offset> </term> <matched_substring> <offset>0</offset> <length>5</length> </matched_substring> <place_id>ChIJ4zHP-Sije4gRBDEsVxunOWg</place_id> <structured_formatting> <description>Paris</description> <subdescription>TN, USA</subdescription> <description_matched_substring> <offset>0</offset> <length>5</length> </description_matched_substring> </structured_formatting> </prediction> <prediction> <description>Paris, Brant, ON, Canada</description> <type>neighborhood</type> <type>political</type> <type>geocode</type> <reference>ChIJsamfQbVtLIgR-X18G75Hyi0</reference> <term> <value>Paris</value> <offset>0</offset> </term> <term> <value>Brant</value> <offset>7</offset> </term> <term> <value>ON</value> <offset>14</offset> </term> <term> <value>Canada</value> <offset>18</offset> </term> <matched_substring> <offset>0</offset> <length>5</length> </matched_substring> <place_id>ChIJsamfQbVtLIgR-X18G75Hyi0</place_id> <structured_formatting> <description>Paris</description> <subdescription>Brant, ON, Canada</subdescription> <description_matched_substring> <offset>0</offset> <length>5</length> </description_matched_substring> </structured_formatting> </prediction> <prediction> <description>Paris, KY, USA</description> <type>locality</type> <type>political</type> <type>geocode</type> <reference>ChIJsU7_xMfKQ4gReI89RJn0-RQ</reference> <term> <value>Paris</value> <offset>0</offset> </term> <term> <value>KY</value> <offset>7</offset> </term> <term> <value>USA</value> <offset>11</offset> </term> <matched_substring> <offset>0</offset> <length>5</length> </matched_substring> <place_id>ChIJsU7_xMfKQ4gReI89RJn0-RQ</place_id> <structured_formatting> <description>Paris</description> <subdescription>KY, USA</subdescription> <description_matched_substring> <offset>0</offset> <length>5</length> </description_matched_substring> </structured_formatting> </prediction> </AutocompletionResponse>
PlacesAutocompleteResponse
Field | Required | Type | Description |
---|---|---|---|
| required | Array<PlaceAutocompletePrediction> | Contains an array of predictions. See PlaceAutocompletePrediction for more information. |
| required | PlacesAutocompleteStatus | Contains the status of the request, and may contain debugging information to help you track down why the request failed. See PlacesAutocompleteStatus for more information. |
| optional | string |
When the service returns a status code other than
|
| optional | Array<string> |
When the service returns additional information about the request
specification, there may be an additional
|
Of particular interest within the results are the place_id
elements, which can be used to request more specific details about the
place using a separate query. See
Place Details
requests.
An XML response consists of a single
<AutocompletionResponse>
element with two types of child
elements:
- A single
<status>
element contains metadata on the request. See Status Codes below. - Zero or more
<prediction>
elements, each containing information about a single place. See Place Autocomplete Results for information about these results. The Places API returns up to 5 results.
We recommend that you use json
as the preferred output flag
unless your application requires xml
for some reason.
Processing XML trees requires some care, so that you reference proper nodes
and elements. See
Processing
XML with XPath for help processing XML.
PlacesAutocompleteStatus
Status codes returned by service.
OK
indicating the API request was successful.ZERO_RESULTS
indicating that the search was successful but returned no results. This may occur if the search was passed a bounds in a remote location.INVALID_REQUEST
indicating the API request was malformed, generally due to the missinginput
parameter.OVER_QUERY_LIMIT
indicating any of the following:- You have exceeded the QPS limits.
- Billing has not been enabled on your account.
- The monthly $200 credit, or a self-imposed usage cap, has been exceeded.
- The provided method of payment is no longer valid (for example, a credit card has expired).
REQUEST_DENIED
indicating that your request was denied, generally because:- The request is missing an API key.
- The
key
parameter is invalid.
UNKNOWN_ERROR
indicating an unknown error.
When the Places service returns JSON results from a search, it places them
within a predictions
array. Even if the service returns
no results (such as if the location
is remote) it
still returns an empty predictions
array. XML responses consist
of zero or more <prediction>
elements.
PlaceAutocompletePrediction
Field | Required | Type | Description |
---|---|---|---|
| required | string |
Contains the human-readable name for the returned result. For
|
| required | Array<PlaceAutocompleteMatchedSubstring> | A list of substrings that describe the location of the entered term in the prediction result text, so that the term can be highlighted if desired. See PlaceAutocompleteMatchedSubstring for more information. |
| required | PlaceAutocompleteStructuredFormat | Provides pre-formatted text that can be shown in your autocomplete results. This content is meant to be read as-is. Do not programmatically parse the formatted address. See PlaceAutocompleteStructuredFormat for more information. |
| required | Array<PlaceAutocompleteTerm> |
Contains an array of terms identifying each section of the returned
description (a section of the description is generally terminated
with a comma). Each entry in the array has a
See PlaceAutocompleteTerm for more information. |
| optional | integer |
The straight-line distance in meters from the origin. This field is
only returned for requests made with an |
| optional | string | A textual identifier that uniquely identifies a place. To retrieve information about the place, pass this identifier in the placeId field of a Places API request. For more information about place IDs, see the Place IDs overview. |
| optional | string | See place_id. |
| optional | Array<string> |
Contains an array of types that apply to this place. For example:
|
PlaceAutocompleteMatchedSubstring
Field | Required | Type | Description |
---|---|---|---|
| required | number | Length of the matched substring in the prediction result text. |
| required | number | Start location of the matched substring in the prediction result text. |
PlaceAutocompleteStructuredFormat
Field | Required | Type | Description |
---|---|---|---|
| required | string | Contains the main text of a prediction, usually the name of the place. |
| required | Array<PlaceAutocompleteMatchedSubstring> |
Contains an array with See PlaceAutocompleteMatchedSubstring for more information. |
| optional | string | Contains the secondary text of a prediction, usually the location of the place. |
| optional | Array<PlaceAutocompleteMatchedSubstring> |
Contains an array with See PlaceAutocompleteMatchedSubstring for more information. |
PlaceAutocompleteTerm
Field | Required | Type | Description |
---|---|---|---|
| required | number | Defines the start position of this term in the description, measured in Unicode characters |
| required | string | The text of the term. |
Place Autocomplete optimization
This section describes best practices to help you make the most of the Place Autocomplete service.
Here are some general guidelines:
- The quickest way to develop a working user interface is to use the Maps JavaScript API Autocomplete widget, Places SDK for Android Autocomplete widget, or Places SDK for iOS Autocomplete UI control
- Develop an understanding of essential Place Autocomplete data fields from the start.
- Location biasing and location restriction fields are optional but can have a significant impact on autocomplete performance.
- Use error handling to make sure your app degrades gracefully if the API returns an error.
- Make sure your app handles when there is no selection and offers users a way to continue.
Cost optimization best practices
Basic cost optimization
To optimize the cost of using the Place Autocomplete service, use field masks in Place Details and Place Autocomplete widgets to return only the place data fields you need.
Advanced cost optimization
Consider programmatic implementation of Place Autocomplete in order to access Per Request pricing and request Geocoding API results about the selected place instead of Place Details. Per Request pricing paired with Geocoding API is more cost-effective than Per Session (session-based) pricing if both of the following conditions are met:
- If you only need the latitude/longitude or address of the user's selected place, the Geocoding API delivers this information for less than a Place Details call.
- If users select an autocomplete prediction within an average of four Autocomplete predictions requests or fewer, Per Request pricing may be more cost-effective than Per Session pricing.
Does your application require any information other than the address and latitude/longitude of the selected prediction?
Yes, needs more details
Use session-based Place Autocomplete with Place Details.
Since your application requires Place Details such as the place name, business status, or opening hours, your implementation of Place Autocomplete should use a session token (programmatically or built into the JavaScript, Android, or iOS widgets) for a total cost of $0.017 per session plus applicable Places Data SKUs depending on which place data fields you request.1
Widget implementation
Session management is automatically built into the JavaScript, Android, or iOS widgets. This includes both the Place Autocomplete requests and the Place Details request on the selected prediction. Be sure to specify the fields
parameter in order to ensure you are only requesting the
place data fields you need.
Programmatic implementation
Use a session token with your Place Autocomplete requests. When requesting Place Details about the selected prediction, include the following parameters:
- The place ID from the Place Autocomplete response
- The session token used in the Place Autocomplete request
- The
fields
parameter specifying the place data fields you need
No, needs only address and location
Geocoding API could be a more cost-effective option than Place Details for your application, depending on the performance of your Place Autocomplete usage. Every application's Autocomplete efficiency varies depending on what users are entering, where the application is being used, and whether performance optimization best practices have been implemented.
In order to answer the following question, analyze how many characters a user types on average before selecting a Place Autocomplete prediction in your application.
Do your users select a Place Autocomplete prediction in four or fewer requests, on average?
Yes
Implement Place Autocomplete programmatically without session tokens and call Geocoding API on the selected place prediction.
Geocoding API delivers addresses and latitude/longitude coordinates for $0.005 per request. Making four Place Autocomplete - Per Request requests costs $0.01132 so the total cost of four requests plus a Geocoding API call about the selected place prediction would be $0.01632 which is less than the Per Session Autocomplete price of $0.017 per session.1
Consider employing performance best practices to help your users get the prediction they're looking for in even fewer characters.
No
Use session-based Place Autocomplete with Place Details.
Since the average number of requests you expect to make before a user selects a Place Autocomplete prediction exceeds the cost of Per Session pricing, your implementation of Place Autocomplete should use a session token for both the Place Autocomplete requests and the associated Place Details request for a total cost of $0.017 per session.1
Widget implementation
Session management is automatically built into the JavaScript, Android, or iOS widgets. This includes both the Place Autocomplete requests and the Place Details request on the selected prediction. Be sure to specify the fields
parameter in order to ensure you are only requesting Basic Data fields.
Programmatic implementation
Use a session token with your Place Autocomplete requests. When requesting Place Details about the selected prediction, include the following parameters:
- The place ID from the Place Autocomplete response
- The session token used in the Place Autocomplete request
- The
fields
parameter specifying Basic Data fields such as address and geometry
Consider delaying Place Autocomplete requests
You can employ strategies such as delaying a Place Autocomplete request until the user has typed in the first three or four characters so that your application makes fewer requests. For example, making Place Autocomplete requests for each character after the user has typed the third character means that if the user types seven characters then selects a prediction for which you make one Geocoding API request, the total cost would be $0.01632 (4 * $0.00283 Autocomplete Per Request + $0.005 Geocoding).1
If delaying requests can get your average programmatic request below four, you can follow the guidance for performant Place Autocomplete with Geocoding API implementation. Note that delaying requests can be perceived as latency by the user who might be expecting to see predictions with every new keystroke.
Consider employing performance best practices to help your users get the prediction they're looking for in fewer characters.
-
Costs listed here are in USD. Please refer to the Google Maps Platform Billing page for full pricing information.
Performance best practices
The following guidelines describe ways to optimize Place Autocomplete performance:
- Add country restrictions, location biasing, and (for programmatic implementations) language preference to your Place Autocomplete implementation. Language preference is not needed with widgets since they pick language preferences from the user's browser or mobile device.
- If Place Autocomplete is accompanied by a map, you can bias location by map viewport.
- In situations when a user does not choose one of the Autocomplete predictions, generally
because none of those predictions are the desired result-address, you can reuse the original
user input to attempt to get more relevant results:
- If you expect the user to enter only address information, reuse the original user input in a call to the Geocoding API.
- If you expect the user to enter queries for a specific place by name or address, use a Find Place request. If results are only expected in a specific region, use location biasing.
- Users inputting subpremise addresses, such as addresses for specific units or apartments within a building. For example, the Czech address "Stroupežnického 3191/17, Praha" yields a partial prediction in Place Autocomplete.
- Users inputting addresses with road-segment prefixes like "23-30 29th St, Queens" in New York City or "47-380 Kamehameha Hwy, Kaneohe" on the island of Kauai in Hawai'i.
Location biasing
Bias results to a specified area by passing a location
parameter and a radius
parameter. This instructs the Place Autocomplete service to prefer showing results
within the defined area. Results outside of the defined area may still be
displayed. You can use the components
parameter to filter results
to show only those places within a specified country.
Tip: Establishment results generally don't rank highly
enough to show in results when the search area is large. If you want
establishments to appear in mixed establishment/geocode results, you can
specify a smaller radius. Alternatively, use types=establishment
to restrict results to establishments only.
Location restricting
Restrict results to a specified area by passing a locationrestriction
parameter.
You may also restrict results to the region defined by location
and a radius
parameter, by adding the strictbounds
parameter. This instructs the Place Autocomplete service to return only
results within that region.