















































































































































































































































































































































































































































































































































































































































































































































	CHAPTER 1 Introduction
	1.1 CLASP Status
	1.2 An Activity-Centric Approach
	1.3 The CLASP Implementation Guide
	1.4 The Root-Cause Database
	1.5 Supporting Material

	CHAPTER 2 Implementation Guide
	2.1 The CLASP Activities
	2.1.1 Institute security awareness program
	2.1.2 Monitor security metrics
	2.1.3 Specify operational environment
	2.1.4 Identify global security policy
	2.1.5 Identify resources and trust boundaries
	2.1.6 Identify user roles and resource capabilities
	2.1.7 Document security-relevant requirements
	2.1.8 Detail misuse cases
	2.1.9 Identify attack surface
	2.1.10 Apply security principles to design
	2.1.11 Research and assess security posture of technology solutions
	2.1.12 Annotate class designs with security properties
	2.1.13 Specify database security configuration
	2.1.14 Perform security analysis of system requirements and design (threat modeling)
	2.1.15 Integrate security analysis into source management process
	2.1.16 Implement interface contracts
	2.1.17 Implement and elaborate resource policies and security technologies
	2.1.18 Address reported security issues
	2.1.19 Perform source-level security review
	2.1.20 Identify, implement and perform security tests
	2.1.21 Verify security attributes of resources
	2.1.22 Perform code signing
	2.1.23 Build operational security guide
	2.1.24 Manage security issue disclosure process
	2.2 Developing a Process Engineering Plan
	2.2.1 Business objectives
	2.2.2 Process milestones
	2.2.3 Process evaluation criteria
	2.3 Form the Process Engineering Team
	2.4 Sample Roadmaps
	2.4.1 ï¿½Green Fieldï¿½ Roadmap
	2.4.2 Legacy Roadmap

	CHAPTER 3 Role-based Overviews
	3.1 Project Manager
	3.2 Requirements Specifier
	3.3 Architect
	3.4 Designer
	3.5 Implementor
	3.6 Test Analyst
	3.7 Security Auditor

	CHAPTER 4 Activities
	4.1 Institute security awareness program
	4.1.1 Provide security training to all team members
	4.1.2 Promote awareness of the local security setting
	4.1.3 Institute accountability for security issues
	4.1.4 Appoint a project security officer
	4.1.5 Institute rewards for handling of security issues
	4.2 Monitor security metrics
	4.2.1 Identify metrics to collect
	4.2.2 Identify how metrics will be used
	4.2.3 Institute data collection and reporting strategy
	4.2.4 Periodically collect and evaluate metrics
	4.3 Specify operational environment
	4.3.1 Identify requirements and assumptions related to individual hosts
	4.3.2 Identify requirements and assumptions related to network architecture
	4.4 Identify global security policy
	4.4.1 Build a global project security policy, if necessary
	4.4.2 Determine suitability of global requirements to project
	4.5 Identify resources and trust boundaries
	4.5.1 Identify network-level design
	4.5.2 Identify data resources
	4.6 Identify user roles and resource capabilities
	4.6.1 Identify distinct capabilities
	4.6.2 Map system roles to capabilities
	4.6.3 Identify the attacker profile (attacker roles and resources)
	4.7 Document security-relevant requirements
	4.7.1 Document explicit business requirements
	4.7.2 Develop functional security requirements
	4.7.3 Explicitly label requirements that denote dependencies
	4.7.4 Determine risk mitigations (compensating controls) for each resource
	4.7.5 Resolve deficiencies and conflicts between requirement sets
	4.8 Detail misuse cases
	4.8.1 Identify misuse cases
	4.8.2 Describe misuse cases
	4.8.3 Identify defense mechanisms for misuse cases
	4.8.4 Evaluate results with stakeholders
	4.9 Identify attack surface
	4.9.1 Identify system entry points
	4.9.2 Map roles to entry points
	4.9.3 Map resources to entry points
	4.10 Apply security principles to design
	4.10.1 Refine existing application security profile
	4.10.2 Determine implementation strategy for security services
	4.10.3 Build hardened protocol specifications
	4.10.4 Design hardened interfaces
	4.11 Research and assess security posture of technology solutions
	4.11.1 Get structured technology assessment from vendor
	4.11.2 Perform security risk assessment
	4.11.3 Receive permission to perform security testing of software
	4.11.4 Perform security testing
	4.12 Annotate class designs with security properties
	4.12.1 Map data elements to resources and capabilities
	4.12.2 Annotate fields with policy information
	4.12.3 Annotate methods with policy data
	4.13 Specify database security configuration
	4.13.1 Identify candidate configuration
	4.13.2 Validate configuration
	4.14 Perform security analysis of system requirements and design (threat modeling)
	4.14.1 Develop an understanding of the system
	4.14.2 Determine and validate security-relevant assumptions
	4.14.3 Identify threats on assets/capabilities
	4.14.4 Determine level of risk
	4.14.5 Identify compensating controls
	4.14.6 Evaluate findings
	4.15 Integrate security analysis into source management process
	4.15.1 Select analysis technology or technologies
	4.15.2 Determine analysis integration point
	4.15.3 Integrate analysis technology
	4.16 Implement interface contracts
	4.16.1 Implement validation and error handling on function or method inputs
	4.16.2 Implement validation on function or method outputs
	4.17 Implement and elaborate resource policies and security technologies
	4.17.1 Review specified behavior
	4.17.2 Implement specification
	4.18 Address reported security issues
	4.18.1 Assign issue to investigator
	4.18.2 Assess likely exposure and impact
	4.18.3 Determine and execute remediation strategies
	4.18.4 Validation of remediation
	4.19 Perform source-level security review
	4.19.1 Scope the engagement
	4.19.2 Run automated analysis tools
	4.19.3 Evaluate tool results
	4.19.4 Identify additional risks
	4.20 Identify, implement and perform security tests
	4.20.1 Identify security tests for individual requirements
	4.20.2 Identify resource-driven security tests
	4.20.3 Identify other relevant security tests
	4.20.4 Implement test plan
	4.20.5 Execute security tests
	4.21 Verify security attributes of resources
	4.21.1 Check permissions on all static resources
	4.21.2 Profile resource usage in the operational context
	4.22 Perform code signing
	4.22.1 Obtain code signing credentials
	4.22.2 Identify signing targets
	4.22.3 Sign identified targets
	4.23 Build operational security guide
	4.23.1 Document pre-install configuration requirements
	4.23.2 Document application activity
	4.23.3 Document the security architecture
	4.23.4 Document security configuration mechanisms
	4.23.5 Document significant risks and known compensating controls
	4.24 Manage security issue disclosure process
	4.24.1 Provide means of communication for security issues
	4.24.2 Acknowledge receipt of vulnerability disclosures
	4.24.3 Address the issue internally
	4.24.4 Communicate relevant information to the researcher
	4.24.5 Provide a security advisory and customer access to remediation

	CHAPTER 5 Vulnerability Root-Causes
	5.1 Preliminaries
	5.1.1 Problem types
	5.1.2 Consequences
	5.1.3 Exposure period
	5.1.4 Other recorded information
	5.2 Range and type errors
	5.2.1 Buffer overflow
	5.2.2 ï¿½Write-what-whereï¿½ condition
	5.2.3 Stack overflow
	5.2.4 Heap overflow
	5.2.5 Buffer underwrite
	5.2.6 Wrap-around error
	5.2.7 Integer overflow
	5.2.8 Integer coercion error
	5.2.9 Truncation error
	5.2.10 Sign extension error
	5.2.11 Signed to unsigned conversion error
	5.2.12 Unsigned to signed conversion error
	5.2.13 Unchecked array indexing
	5.2.14 Miscalculated null termination
	5.2.15 Improper string length checking
	5.2.16 Covert storage channel
	5.2.17 Failure to account for default case in switch
	5.2.18 Null-pointer dereference
	5.2.19 Using freed memory
	5.2.20 Doubly freeing memory
	5.2.21 Invoking untrusted mobile code
	5.2.22 Cross-site scripting
	5.2.23 Format string problem
	5.2.24 Injection problem (ï¿½dataï¿½ used as something else)
	5.2.25 Command injection
	5.2.26 SQL injection
	5.2.27 Deserialization of untrusted data
	5.3 Environmental problems
	5.3.1 Reliance on data layout
	5.3.2 Relative path library search
	5.3.3 Relying on package-level scope
	5.3.4 Insufficient entropy in PRNG
	5.3.5 Failure of TRNG
	5.3.6 Publicizing of private data when using inner classes
	5.3.7 Trust of system event data
	5.3.8 Resource exhaustion (file descriptor, disk space, sockets, ...)
	5.3.9 Information leak through class cloning
	5.3.10 Information leak through serialization
	5.3.11 Overflow of static internal buffer
	5.4 Synchronization and timing errors
	5.4.1 State synchronization error
	5.4.2 Covert timing channel
	5.4.3 Symbolic name not mapping to correct object
	5.4.4 Time of check, time of use race condition
	5.4.5 Comparing classes by name
	5.4.6 Race condition in switch
	5.4.7 Race condition in signal handler
	5.4.8 Unsafe function call from a signal handler
	5.4.9 Failure to drop privileges when reasonable
	5.4.10 Race condition in checking for certificate revocation
	5.4.11 Mutable objects passed by reference
	5.4.12 Passing mutable objects to an untrusted method
	5.4.13 Accidental leaking of sensitive information through error messages
	5.4.14 Accidental leaking of sensitive information through sent data
	5.4.15 Accidental leaking of sensitive information through data queries
	5.4.16 Race condition within a thread
	5.4.17 Reflection attack in an auth protocol
	5.4.18 Capture-replay
	5.5 Protocol errors
	5.5.1 Failure to follow chain of trust in certificate validation
	5.5.2 Key exchange without entity authentication
	5.5.3 Failure to validate host-specific certificate data
	5.5.4 Failure to validate certificate expiration
	5.5.5 Failure to check for certificate revocation
	5.5.6 Failure to encrypt data
	5.5.7 Failure to add integrity check value
	5.5.8 Failure to check integrity check value
	5.5.9 Use of hard-coded password
	5.5.10 Use of hard-coded cryptographic key
	5.5.11 Storing passwords in a recoverable format
	5.5.12 Trusting self-reported IP address
	5.5.13 Trusting self-reported DNS name
	5.5.14 Using referrer field for authentication
	5.5.15 Using a broken or risky cryptographic algorithm
	5.5.16 Using password systems
	5.5.17 Using single-factor authentication
	5.5.18 Not allowing password aging
	5.5.19 Allowing password aging
	5.5.20 Reusing a nonce, key pair in encryption
	5.5.21 Using a key past its expiration date
	5.5.22 Not using a random IV with CBC mode
	5.5.23 Failure to protect stored data from modification
	5.5.24 Failure to provide confidentiality for stored data
	5.6 General logic errors
	5.6.1 Ignored function return value
	5.6.2 Missing parameter
	5.6.3 Misinterpreted function return value
	5.6.4 Uninitialized variable
	5.6.5 Duplicate key in associative list (alist)
	5.6.6 Deletion of data-structure sentinel
	5.6.7 Addition of data-structure sentinel
	5.6.8 Use of sizeof() on a pointer type
	5.6.9 Unintentional pointer scaling
	5.6.10 Improper pointer subtraction
	5.6.11 Using the wrong operator
	5.6.12 Assigning instead of comparing
	5.6.13 Comparing instead of assigning
	5.6.14 Incorrect block delimitation
	5.6.15 Omitted break statement
	5.6.16 Improper cleanup on thrown exception
	5.6.17 Improper cleanup on thrown exception
	5.6.18 Uncaught exception
	5.6.19 Improper error handling
	5.6.20 Improper temp file opening
	5.6.21 Guessed or visible temporary file
	5.6.22 Failure to deallocate data
	5.6.23 Non-cryptographic PRNG
	5.6.24 Failure to check whether privileges were dropped successfully

	APPENDIX A Principles (Key Security Concepts)
	1 Insider Threats as the Weak Link
	2 Ethics in Secure-Software Development
	3 Fundamental Security Goals - Core Security Services
	3.1 Authorization (access control)
	3.2 Authentication
	3.3 Confidentiality
	3.4 Data Integrity
	3.5 Availability
	3.6 Accountability
	3.7 Non-repudiation
	4 Input Validation
	4.1 Where to perform input validation
	4.2 Ways in which data can be invalid
	4.3 How to determine input validity
	4.4 Actions to perform when invalid data is found
	5 Assume the Network is Compromised
	6 Minimize Attack Surface
	7 Secure by Default
	8 Defense-in-Depth
	9 Principles for Reducing Exposure
	10 The Insecure Bootstrapping Principle

	APPENDIX B Templates and Worksheets
	1 Sample Coding Guidelines
	1.1 Instructions to manager
	1.2 Instructions to developer
	2 System Assessment Worksheets
	1 Development Process and Organization
	2 System Resources
	3 Network Resource Detail
	4 File System Usage Detail
	5 Registry Usage (Microsoft Windows Environment)

	APPENDIX C Glossary of Terms

