


Stumvoll et al: Glutamine in human carbohydrate metabolism 779

Table 1. Biological functions of glutamine tion of nicotinamide adenine dinucleotide (NADH) and
Interorgan nitrogen transport and intracellular nitrogen donor (renal flavin adenine dinucleotide (FADH) [22–24]. This is due

ammoniagenesis, hepatic ureagenesis, synthetic processes) to the fact that reducing equivalents are generated in
Oxidative fuel (enterocytes, cells of the immune system)

the glutamate dehydrogenase, as well as in the a-ketoglu-Substrate and stimulator of glycogen synthesis
Substrate and stimulator of gluconeogenesis tarate dehydrogenase, malate dehydrogenase, and succi-
Maintenance of acid-base balance nate dehydrogenase reactions in the Krebs cycle, steps
Potential regulator function of protein synthesis of unknown

not involved in the gluconeogenesis from other substrates.mechanism
Precursor for g-aminobutyric acid in brain Glutamine can not be directly incorporated into glyco-
Inhibitor of lipolysis and ketogenesis in animals gen. Rather, its carbons enter the glucose-6-phosphate
Relevance for total parenteral nutrition

pool via gluconeogenesis, which is subsequently mutated
to glucose-1-phosphatase. After activation with uridine-
triphosphate and the formation of uridine diphosphate
(UDP)-glucose, the carbon skeleton is incorporated into

and from other amino acids liberated from protein [19–
glycogen [25].

21]. Free glutamine may also be formed as a direct result
of proteolysis. Interorgan glutamine metabolism

The initial step in glutamine degradation involves its In humans, glutamine accounts for approximately 20%
conversion to glutamate by the action of phosphate- of all amino acids in the circulation, almost twice as much
dependent glutaminase, an enzyme located in the mito- as alanine, which is widely considered to be the most
chondrial matrix, and is closely linked to the glutamine important gluconeogenic amino acid [26–31]. The basal
transport system into the mitochondrial matrix [8]. The plasma turnover rate of glutamine in postabsorptive nor-
resultant glutamate can be either transaminated via glu- mal subjects (approximately 5 mmol · kg21 · min21) is
tamate-oxaloacetate-transaminase or glutamate-alanine- slightly greater than that of alanine (approximately 4.5
transaminase (cytosol and mitochondrial matrix) or, less

mmol · kg21 · min21), and the plasma concentration of
importantly, can be deaminated via glutamate dehydroge- glutamine (approximately 0.6 mm) is about twice that of
nase (mitochondrial matrix). Both reactions yield a-keto- alanine (approximately 0.25 mm) [32–40].
glutarate, an intermediate of the tricarboxylic acid cycle. The concentration of glutamine in plasma is deter-
Transport of glutamate into the mitochondrium involves mined by its relative rates of release into and uptake from
either the electroneutral glutamate/hydroxyl antiporter plasma by various tissues. The major tissues releasing net
system or the electrogenic glutamate/aspartate antipor- amounts of glutamine into plasma are skeletal muscle,
ter [8]. In some tissues (for example, jejunum), glutamate lungs, and adipose tissue. Gut and kidney are the main
can also be converted to glutamate semialdehyde (gluta- organs demonstrating net uptake of glutamine. Liver and
mate semialdehyde dehydrogenase), with subsequent for- muscle play major regulatory roles in glutamine homeo-
mation of proline and arginine. In most tissues, the major stasis because, depending on the particular circumstances,
fate of glutamine is conversion to CO2; however, in tissues both can markedly alter either their release or uptake
possessing the appropriate enzymatic machinery, it can of glutamine (Table 2), but these have generally not been
be converted to glucose (that is, liver and kidney; dis- quantitated to any great extent in humans (Fig. 2).
cussed later here) and glycogen (that is, liver and muscle).

Gluconeogenic and glycogenic pathway GLUTAMINE AS
GLUCONEOGENIC SUBSTRATEThe biochemical pathway for glutamine conversion to
General considerations, hepatic andglucose in hepatocytes and renal tubular cells involves
renal gluconeogenesisdeamination to glutamate, transamination to a-ketoglu-

tarate and conversion to oxaloacetate, a Krebs cycle Gluconeogenesis, synthesis of glucose from nonglu-
intermediate, that enters the common gluconeogenic cose precursors [41, 42], accounts for approximately 50%
pathway (Fig. 1). Either carbons 1 through 3 or 2 through of all glucose released into the circulation after an over-
4 of glutamine are directly incorporated into glucose, night fast in humans [43]. It becomes crucial with more
whereas the other carbons are lost as CO2 in the Krebs prolonged fasting for the maintenance of the glucose
cycle, and the phosphoenolpyruvate carboxykinase step supply for the nervous system and anaerobic energy pro-
can, in theory, re-enter the gluconeogenic pathway in duction when glycogen stores become depleted [41, 44].
the pyruvate carboxylase step. Unlike gluconeogenesis In humans, lactate, glycerol, and amino acids account
from other substrates (lactate, alanine, pyruvate), gluta- for nearly all of the carbons transported through the
mine gluconeogenesis is unique in that it represents an circulation and incorporated into plasma glucose [24,
exergonic reaction with a net yield of 8 mol ATP per 42]. In the postabsorptive state, more plasma glucose is

converted to plasma lactate than comes from plasmamol glucose synthesized, provided there is aerobic oxida-
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Fig. 1. Biochemistry of glutamine metabo-
lism (main pathways and key enzymes): (1)
glutamate dehydrogenase, (2) glutamate oxa-
loacetate transaminase, (3) glutamine synthe-
tase, (4) glutaminase, (5) glutamate semialde-
hyde dehydrogenase.

Table 2. Tissue glutamine net uptake and release in of the liver [49], until recently, the human kidney has
postabsorptive humans

generally been regarded as contributing insignificantly
Net Net to postabsorptive glucose production [50–52]. This tradi-

uptake release tional view was based on net balance data of glucose,
Tissues lmol/min Reference that is, the mathematical product of arteriorenal venous
Muscle — 59 (19–168) [28, 30, 31, 33, 111, 200–211] difference of glucose concentrations (obtained through
Splanchnic a sampling catheter in a renal vein) and renal blood flow

tissues 97 (59–165) — [77, 111, 187, 188, 209, 211, 214]
showing no significant difference in arterial and renalGut 57 (41–78) — [94, 111, 188, 215]

Liver 20 — [111] vein glucose concentrations in the basal state [53–55].
Kidney 60 (35–110) — [55, 62, 63, 209, 214, 216] Thus, by merely representing the difference between up-
Brain 13 (5–23] — [209, 214, 216]

take and release of a substrate, net balance measurementsLung — 56 [217]
Adipose cannot evaluate the contribution of an organ to the entry

tissue — 12 [218] and removal of a substrate from the systemic circulation.
Moreover, inferences based on net balance measure-

ments may lead to an underestimation of the role of
an organ in the overall metabolism of a substrate. For

lactate [45, 46], so that lactate gluconeogenesis actually example, with isotope dilution determination of systemic
provides no net addition of carbon to the glucose pool. glucose flux, entry of glucose into the circulation is quan-
Glycerol becomes a quantitatively important gluconeo- titated by the dilution of the plasma glucose tracer con-
genic precursor only when there is accelerated lipolysis centration by unlabeled glucose released into the circu-
such as after prolonged fasting [47] and in diabetes melli- lation [56]. If the kidney were to take up and release
tus [48]. Consequently, under normal circumstances, glucose at equal rates, there would be no arteriorenal
amino acids are largely responsible for the net addition venous glucose difference, and net glucose balance
of carbons to the glucose pool, which are not immediately would be zero. Nevertheless, release of unlabeled glu-
derived from plasma glucose. cose into the circulation by the kidney would dilute the

Gluconeogenesis is essentially limited to liver and kid- plasma glucose tracer concentration and would contrib-
ney because other tissues lack glucose-6-phosphatase. ute to the isotopic estimation of glucose entry into the
Both organs are comparably equipped with a complete circulation (Fig. 2). Similar considerations hold for the
set of gluconeogenic enzymes [44]. Although it has long contribution of the kidney to removal of glucose from
been recognized that on a gram-for-gram tissue basis, the circulation as determined isotopically. Therefore, a

combination of net balance and isotopic techniques withthe gluconeogenic capacity of the kidney exceeds that
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Fig. 2. Release and uptake of glutamine by
various organs in humans. Approximations
are based on net balance and, where available,
on isotope data.

measurement of substrate as well as tracer concentra- to 25% of all glucose released into the circulation, and
gluconeogenesis accounts for approximately 40 to 50%tions is necessary to assess individually the uptake and

release of a substrate by an organ [46, 56, 57]. of systemic glucose release [43]. It can therefore be readily
calculated that under these circumstances, the humanIn 1978, Kida et al found a renal contribution of 25%

to systemic glucose production in rats by injecting a bolus kidney should account for approximately half of all glu-
coneogenesis and should thus be as important as a gluco-of [14C]glucose and by comparing the decline of blood

glucose concentration and [14C]glucose concentration neogenic organ as the liver [67]. Available evidence for
glutamine gluconeogenesis in both organs is reviewed.following hepatectomy [58]. In intact animals, the isoto-

pic net balance approach was not employed until re-
Early in vitro and animal studiescently, when a significant renal uptake of glucose was

shown in dogs, accounting for as much as 30% of glucose In 1963, glutamine was first shown to be an efficient
substrate in vitro for renal and subsequently also forremoval from the circulation under postabsorptive con-

ditions [59, 60]. Because renal net balance was within hepatic gluconeogenesis [68, 69]. The first demonstration
of the gluconeogenic potential of the glutamate/gluta-the expected range, that is, close to zero, the data also

indicated that the kidney was responsible for more than mine couplet in mammals in vivo dates back to 1968
[70]. As much as 30 to 40% of label injected intraportally20% of glucose entry into plasma in postabsorptive dogs.

An analogous approach was recently used in healthy, as [14C]glutamate to lactating cows was incorporated into
plasma glucose. Based on specific activities in plasmapostabsorptive humans [61]. These studies showed, as

expected, that the human kidney simultaneously takes glucose, the authors conservatively estimated that ap-
proximately 8% of glucose carbons were derived fromup and releases appreciable amounts of glucose. Renal

glucose release accounted for approximately 25% of glutamate. Intraportal injection of various 14C-labeled
precursors in rats also demonstrated glutamine incorpo-all glucose released into the circulation, and its uptake of

glucose accounted for approximately 20% of all glucose ration into glucose, albeit at a lower rate than for alanine
and lactate [71]. Tracer data in sheep have shown thatremoved from the circulation (Table 2) [61–63]. These

results thus refuted textbook wisdom that stated that 40 to 60% of all amino acids incorporated into glucose
are accounted for by alanine plus the glutamate/gluta-human kidneys play a minor role in glucose homeostasis.

Because the normal human kidney contains negligible mine couplet [72–74], and approximately 5% of plasma
glucose comes from plasma glutamine [75]. It was esti-amounts of glycogen [64] and cells other than proximal

tubules that could theoretically store glucose lack glucose- mated that in sheep, the glutamine/glutamate couplet
could be responsible for 20 to 40% of renal glucose6-phosphatase [65, 66], gluconeogenesis is likely respon-

sible for essentially all renal glucose release. In postab- release and approximately 20% of overall glucose release
[73]. However, considerable species differences for rumi-sorptive humans, renal glucose release accounts for 15
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nants have to be taken into consideration [75, 76]. Most (105 mmol/min) [80, 85] and cannot account for the isoto-
pically determined whole-body glutamine conversion toof our knowledge regarding the regulation of glutamine

gluconeogenesis is still based on in vitro experiments glucose (approximately 45 mmol/min) [33, 34]. Indeed,
the latter represents only a minimal estimate due toand studies in animals (discussed in the Regulation of

glutamine gluconeogenesis section). dilution of specific activity by carbon exchange in the
Krebs cycle [86–88]. Furthermore, it is likely that some

Human studies glutamine taken up by the liver serves as a shuttle for
nitrogen transport, protein synthesis, and other meta-In 1971, Marliss et al were the first to demonstrate net

splanchnic uptake of glutamine in humans and proposed bolic purposes and does not undergo gluconeogenesis.
Therefore, based on net hepatic uptake, it appears thatthat glutamine was an important gluconeogenic precur-

sor [77]. The relative contributions of liver and gut to only a minor proportion of glutamine gluconeogenesis
occurs in the liver.splanchnic glutamine uptake, however, were not assessed

in this study. It is remarkable that although some of the In healthy postabsorptive volunteers, the rate of con-
version of glutamine to glucose by the kidney was directlyearly glutamine studies from the late 1960s and 1970s

were done in Krebs’ laboratory [22, 68, 69, 78], in his assessed using a combination of isotopic ([U-14C]gluta-
mine, [6-3H]glucose) and renal vein catheterization tech-1980 review, he described glutamine as the most versatile

amino acid but made no mention of it as a gluconeogenic niques, which allows the calculation of hepatic glutamine
gluconeogenesis as the difference between systemic andprecursor [79]. A probable explanation is that the liver

was considered to be the predominant gluconeogenic renal. It was found that almost 80% of systemic gluta-
mine gluconeogenesis took place in the kidney and thatorgan at that time, and human studies in the late 1960s

and 1970s had indicated that most, if not all, net splanch- 10 to 20% of renal glucose production was accounted
for by renal glutamine gluconeogenesis [62, 63]. Thisnic glutamine uptake was due to nonhepatic tissues,

whereas hepatic uptake of alanine exceeded that of all can explain the failure of hepatic glutamine uptake to
account for all of the glutamine gluconeogenesis in hu-other amino acids measured [80, 81]. Therefore, the con-

tribution of glutamine to hepatic gluconeogenesis was mans. Furthermore, the findings identify glutamine as
a major renal gluconeogenic precursor in humans andassumed to be of minor importance, and it became widely

held that alanine was the pre-eminent gluconeogenic confirm numerous earlier reports from in vitro studies
using liver tissue or isolated hepatocytes [68, 89–91] andamino acid [80, 82, 83]. In none of these studies, however,

was glutamine incorporation into glucose actually quan- renal cortex slices [22, 69, 78, 92].
titated and compared with that of alanine.

Comparison of alanine and glutamine asThe recent development of a method to determine
gluconeogenic substratesthe specific activity and enrichment of [14C]glutamine

and [13C]glutamine, respectively, in plasma [15–17] made In animals [68, 72, 73, 75, 93] and humans [33, 34],
alanine and glutamine are the two predominant gluco-it feasible to trace the incorporation of glutamine car-

bons into plasma glucose in humans. The use of a combi- neogenic amino acids, accounting for 40 to 70% of all
amino acids converted to glucose. Differences in physio-nation of isotopic tracers showed that in normal postab-

sorptive humans, incorporation of plasma glutamine into logic roles and metabolic origins justify comparative as-
sessment of these two amino acids and their respectiveplasma glucose accounted for approximately 5 to 8% of

overall glucose production [33, 34, 40]. A large propor- contributions to gluconeogenesis in humans.
Carbon transport through plasma. It is well establishedtion of plasma glutamine is oxidized to CO2. Some of

this CO2 could, in theory, be incorporated into glucose that alanine carbon can, among other sources, originate
from glucose carbon in a variety of tissues [94–99]. Ala-through simple fixation by pyruvate carboxylase and not

represent true gluconeogenesis [84]. However, using in- nine derived from glucose as well as from other precur-
sors can then be released into the circulation and utilizedcorporation into glucose of carbon derived from infused

carbon-labeled leucine as an index for CO2 fixation, it for production of glucose [33, 46, 100, 101]. This shuttle of
carbon between plasma glucose and alanine is commonlyhas recently been demonstrated that only 4% of plasma

glutamine conversion to plasma glucose is due to simple referred to as the glucose-alanine cycle [83, 102], analo-
gous to the Cori cycle involving plasma glucose-lactatefixation of CO2 [40].

Rates of glutamine gluconeogenesis in humans ob- interconversions [103, 104]. Until recently, it was not
known whether a similar cycle between glucose and glu-tained from ratios of [14C]glucose- to [14C]glutamine-spe-

cific activities in plasma [33, 34] represent whole-body tamine existed in humans.
As assessed by incorporation of carbon-labeled glu-glutamine incorporation into glucose and cannot assess

individual contributions by liver and kidney. In humans, cose into alanine and glutamine, 40% of plasma alanine,
but only about 15% of plasma glutamine, came fromnet hepatic glutamine uptake (approximately 30 mmol/

min) is relatively small compared with that of alanine plasma glucose [18]. Approximately 25% of plasma ala-
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Table 3. Gluconeogenic substrates in postabsorptive healthy humans

“True” Glucose from new
Gluconeogenesis Substrate recycled gluconeogenesis carbons added by

Gluconeogenic substrate lmol/kg/min from glucose % lmol/kg/min substrate %

Lactate 2.40 67 0.79 32
Glutamine 0.85 13 0.74 30
Alanine 0.80 40 0.48 20
Glycerol 0.20 0 0.20 8
Other amino acids 0.27 10 0.24 10

Sum 4.42 100 2.45 100

Assumptions are: systemic glucose production 5 11.3 mmol/kg/min, gluconeogenesis 5 40% of systemic glucose production, other amino acids contribute
approximately 5% to total gluconeogenesis, all other amino acid not glucose derived, Krebs-cycle carbon exchange factor 1.4. Data are taken from [18,33,40,48,87,193].

nine and 10% of plasma glutamine were converted to into 60-hour fasted normal volunteers increased net
splanchnic glucose release but had no effect on net renalplasma glucose in humans [33, 34, 62, 105]. Furthermore,

approximately 30% of plasma alanine and 45% of glucose release [54]. The finding in postabsorptive hu-
mans that hepatic gluconeogenesis from alanine is ap-plasma glutamine came from the direct release from

protein [33]. These findings provide evidence that in proximately fivefold greater than that from glutamine
[62] is consistent with in vitro studies indicating thatpostabsorptive humans, there is greater flux of carbon

from plasma glucose to plasma alanine than from plasma glucose production from alanine by perfused rat livers
and isolated rat hepatocytes considerably exceeds thatalanine to plasma glucose. The opposite is true for gluta-

mine, because a large proportion of plasma glutamine from glutamine [68, 71, 90, 107]. There are, however,
species differences in hepatic gluconeogenesis [108], andoriginates from glutamine in protein or from other amino

acids released from protein. most in vitro studies have used supraphysiological sub-
strate concentrations (for example, 10 mm) [68, 108].Knowledge of the relative flux of glucose-derived car-

bon to alanine and glutamine, respectively, versus the For example, in rat kidney, glucose production from
glutamine is maximal at 2 mm glutamine, whereas glucoseflux of non-glucose-derived amino acid carbon (“new

carbon”) to glucose challenges the widely held view that production from lactate is maximal at 5 mm lactate; how-
ever, at 1 mm glutamine and lactate, glucose productionalanine is the most important gluconeogenic amino acid

[80, 82, 83]. Table 3 shows the rates of gluconeogenesis from glutamine exceeds that from lactate [109].
Because renal uptake of alanine was approximatelyfrom the major gluconeogenic precursors. Because a cer-

tain proportion of each precursor comes from plasma half that of glutamine while its conversion to glucose
was less than one tenth that of glutamine [62], differencesglucose, rates of gluconeogenesis to a certain extent re-

flect mere recycling of carbons back to glucose. True in uptake or transport of alanine and glutamine probably
cannot explain the selectivity in the use of these aminogluconeogenesis or “neo-gluconeogenesis” [106], that is,

glucose synthesis from nonglucose-derived precursors, acids for gluconeogenesis by the kidney. Activity of en-
zymes of alanine metabolism, however, is much loweris obtained by subtracting the recycled proportion from

total gluconeogenesis. Thus, in terms of adding new, that in the kidney than in the liver [68, 78]. Proximal cortical
tubules, where gluconeogenesis primarily takes place inis, nonglucose-derived, carbons to the plasma glucose

pool glutamine appears to be the most important amino the human kidney, are known to lack or have very little
alanine aminotransferase activity [110]. This would se-acid and is as important as lactate.

Organ selectivity. In vitro experiments [24] and net verely limit conversion of alanine to pyruvate, an essen-
tial step in the formation of glucose from alanine, andbalance studies in humans [77, 80, 81] have suggested

that alanine and glutamine are selective gluconeogenic would explain the limited gluconeogenic use of alanine
by the human kidney.precursors for liver and kidney, respectively. Recent

studies in healthy postabsorptive volunteers using a com- There are several possible explanations for the differ-
ence in renal and hepatic use of glutamine for gluconeo-bination of isotopic ([14C]glutamine and [13C]alanine) and

renal vein catheter techniques compared systemic and genesis. First, in terms of substrate supply, concentra-
tions of glutamine presented to the kidney are likely to berenal rates of conversion to glucose of these amino acids.

Although almost 80% of systemic glutamine gluconeo- greater than those presented to the liver. Portal venous
glutamine levels are lower than arterial levels [111–113]genesis took place in the kidney, alanine gluconeogenesis

was virtually absent in the kidney and, therefore, must because of intestinal glutamine extraction [114], and por-
tal venous blood flow is approximately three timeshave occurred exclusively in the liver [62].

These results are consistent with the observations of greater than hepatic arterial flow [112]. Second, gluta-
mine is transported across the plasma membrane in liverBjörkman and Felig, who found that infusion of alanine
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Hormones

Insulin. In humans during euglycemic-hyperinsulin-
emic clamp experiments, systemic glucose production,
which represents the sum of hepatic plus renal, decreases
virtually to zero [125]. This strongly suggests that insulin
suppresses renal and hepatic gluconeogenesis from all
substrates in humans. Infusion of insulin in normal volun-
teers, which increased arterial insulin levels from 36 to
219 pm suppressed systemic glutamine gluconeogenesis
by 50%. The fact that glutamine gluconeogenesis in the
liver was reduced by approximately 25%, whereas that
in kidney was reduced by almost 75%, suggests that renal
glutamine gluconeogenesis is more sensitive to insulin
than hepatic [126]. Renal glutamine uptake was not in-
fluenced by insulin in this study. Many studies have
shown that insulin inhibits gluconeogenesis in vitro in
kidney cortex slices [127] and in vivo in diabetic animals
treated with insulin [58]. In normal dogs, intrarenal infu-
sion of insulin, designed not to suppress systemic glucose
appearance, decreased renal glucose production of the

Fig. 3. Interorgan glutamine metabolism (principal fluxes). infused kidney by approximately 75% [60]. In sheep,
insulin had no effect on hepatic glutamine net balance
[128]. In dogs, insulin suppressed renal glucose produc-
tion by 75% and renal glycerol incorporation into glucose

specifically by the N system, whereas in kidney, it is by 30%. Because glutamine is a major renal gluconeo-
mainly transported by the A system [115]. There are genic precursor, insulin should also suppress renal gluco-
several differences in these transport systems (for exam- neogenesis from glutamine.
ple, the A system, but not the N system, is stimulated Glucagon. In humans, infusion of glucagon designed
by hormones such as glucagon and epinephrine) [115, to increase plasma glucagon concentrations to those ob-
116]. Third, although transport across the hepatocyte served during hypoglycemia increased overall glutamine
plasma membrane appears to be the rate-limiting step gluconeogenesis by 25%, and this increase was entirely
for metabolism of alanine [117, 118], there is evidence accounted for by increased hepatic glutamine gluconeo-
that glutaminase is the rate-limiting step for glutamine genesis [63]. The fact that this stimulation occurred in
metabolism [8]. Liver and kidney glutaminase differ in the absence of significant changes in plasma glutamine

concentration or turnover suggests increased gluconeo-many respects [119], one of which being a relatively low
genic efficiency. In sheep, infusion of glucagon decreasedglutaminase activity in liver [120]. Thus, a combination of
plasma glutamine concentration by 30% and doubleddifferences in substrate supply, transport, and enzymatic
net hepatic glutamine uptake [128, 129]. The failure ofactivity of rate-limiting steps might explain differences
glucagon to stimulate renal glutamine gluconeogenesisin the use of glutamine by the liver and kidney for gluco-
in humans is in agreement with in vitro studies demon-neogenesis.
strating that glucagon does not stimulate renal gluconeo-The exclusive use of alanine for gluconeogenesis by
genesis [130]. Moreover, those segments of the nephronthe liver in humans suggests that incorporation of car-
equipped with gluconeogenic enzymes (proximal tubule)bon-labeled alanine into glucose may serve as a noninva-
[65, 66] lack glucagon receptors that have neverthelesssive metabolic probe for investigation of hepatic glucone-
been identified on cells of the distal tubule [131]. Prelimi-

ogenesis (Fig. 3) [62].
nary data indicate that infusion of glucagon in humans,
while maintaining insulin and glucose concentrationsRegulation of glutamine gluconeogenesis
constant (somatostatin clamp), reduces plasma gluta-

One might expect that factors regulating gluconeogen- mine by 30% but does not affect overall release into the
esis in general [121–124] should affect gluconeogenesis circulation [132]. This increased plasma clearance could
from glutamine in a similar fashion. However, because have represented increased hepatic uptake and utiliza-
glutamine incorporation into glucose occurs predomi- tion for gluconeogenesis provided that there were recip-
nantly in the kidney, in some aspects, its gluconeogenesis rocal changes in uptake in other tissues.

In isolated hepatocytes from starved rats, glucagon in-is unique.
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creased gluconeogenesis from glutamine to a far greater Nonhormonal factors
extent than that from any other amino acid precursor, Among the many other factors influencing gluconeo-
including alanine, serine, and proline [91]. The authors genesis in general such as nutritional state diet, acid-
suggested that provision of ATP in the mitochondria base status, and hypoglycemia [121, 122, 124], only few
may be responsible, as it has been shown that addition data are available regarding glutamine gluconeogenesis.
of glucagon to cells metabolizing glutamine results in an For in-depth coverage of in vitro and animal data on
increase in the intramitochondrial ATP/adenine diphos- regulation of renal gluconeogenesis, the reader is re-
phate ratio [133]. In addition, glucagon activation of mi- ferred to two extensive review articles [24, 139].
tochondrial glutaminase has been proposed to play a There is limited data on fasting in humans. In one
role, but the exact mechanism is still unclear. study, glutamine gluconeogenesis increased by 43% dur-

Catecholamines. In a recent study in healthy humans ing prolongation of a fast from 18 to 42 hours, whereas
that was designed to measure renal glucose production its contribution to total gluconeogenesis remained un-
isotopically, epinephrine acutely increased systemic glu- changed [40]. In humans, net renal glucose release has
cose production by 60%, hepatic glucose release by 50%, been correlated with the severity of acidosis [141], but no
and renal glucose production by 100% [61]. It is of note specific data are available for glutamine gluconeogenesis.
that in this study, infusion of epinephrine, which resulted Pitts et al reported that during chronic acidosis, as much
in circulating concentrations of epinephrine similar to as 40% of the glutamine extracted by the kidney could
those observed during hypoglycemia [134], caused a sus- have been converted to glucose [142]. Because of renal
tained increase in renal glucose release that by three Krebs cycle carbon exchange, however, this probably
hours accounted for essentially all of the increased ap- represents an underestimation [22]. In 72-hour experi-
pearance of glucose in the circulation. The stimulatory mentally acidotic sheep, systemic glutamine gluconeo-
effect of epinephrine on renal glucose production could genesis was unchanged [75]. In this study, however, indi-
be direct via cAMP-mediated stimulation of renal key vidual contributions of liver and kidney were not
gluconeogenic enzymes, as shown in vitro [135], or indi- assessed. Because renal glutamine uptake increased dur-
rect through increased substrate availability because epi-

ing acidosis in sheep [75], it is possible that renal gluta-
nephrine has been shown to increase the availability of

mine gluconeogenesis increased, whereas hepatic gluta-gluconeogenic precursors [136].
mine gluconeogenesis decreased. In vitro studies haveInfusion of epinephrine designed to increase plasma
demonstrated that acidosis increases renal production ofepinephrine concentrations to levels observed during se-
glucose from glutamine [143–145] or glutamate [146];vere hypoglycemia increased renal glutamine uptake
this could be explained by increases in the activities ofnearly 80% in humans [62]. In this study, renal glucose
glutaminase, glutamate dehydrogenase, and phospho-release increased approximately twofold. Overall gluta-
enolpyruvate carboxykinase demonstrated to occur dur-mine gluconeogenesis was stimulated by 75%, and the
ing acidosis [147].proportion accounted for by the kidney increased from

The study of acidosis is of particular interest because73 to 90%, whereas the hepatic contribution decreased
glutamine is the most important substrate for renal am-from 27 to 10%.
moniagenesis [22, 143, 145, 146]. During acidosis, animalDuring insulin-induced hypoglycemia in healthy vol-
kidneys extract increased amounts of glutamine (fiveunteers, renal glucose release measured isotopically was
times more than the gut) for generation of ammoniaincreased almost threefold compared with the eugly-
and bicarbonate [148]. The dog liver switches from netcemic control experiment [137, 138]. Thus, renal glucose
uptake to net release [149–151], and net muscle gluta-production is stimulated by counterregulatory hormones,
mine release increases in various species [11, 148, 152,primarily catecholamines, and plays an important role
153]. These extrarenal adaptations would make gluta-in glucose counterregulation of hypoglycemia.
mine available for the kidney to provide carbon andOther hormones. In vitro studies have shown that glu-
nitrogen essential for base generation at the expense ofcocorticoids, among other hormones (thyroxine, growth
hepatic ureagenesis [11, 148, 154, 155]. Increased renalhormone, parathyroid hormone), increase renal glucose
glucose formation is currently viewed as an outlet forrelease and in some instances gluconeogenesis, although
the increased formation of a-ketoglutarate derived fromthat of glutamine has not been specifically examined [67,
glutamate and glutamine, thus conserving carbon (Fig. 4).139]. In sheep, the glucocorticoid dexamethasone only

marginally increased overall glutamine gluconeogenesis,
Methodological considerations in renal net balancebut the proportion that was accounted for by the kidney
and isotopic studiesincreased disproportionately [75]. In humans, infusion

The use of a combination of balance and isotopic tech-of hydrocortisone increased plasma glutamine flux by
niques in some of the reviewed studies in humans has30% [140]; however, gluconeogenesis was not assessed

in this study. certain shortcomings that need to be taken into consider-
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GLUTAMINE AS A REGULATOR IN
CARBOHYDRATE METABOLISM

In addition to being a metabolic substrate, glutamine
may also act as a regulator of several physiologic pro-
cesses. For example, in vitro glutamine has been shown
to stimulate lipid formation by activation of acetyl-CoA
carboxylase [158] and to inhibit adipocyte lipolysis [159].
Moreover, glutamine has been reported to suppress pro-
teolysis in liver and skeletal muscle [160–163] and to
stimulate protein synthesis in skeletal muscle [160, 164].
In humans, glutamine infusion has been shown to sup-
press its own de novo synthesis by almost 50% [165, 166].
Finally, as will be discussed, glutamine has been shown
to stimulate hepatic and renal gluconeogenesis as well
as glycogen synthesis in muscle and liver.

Gluconeogenesis

Studies employing isolated renal tubules have demon-Fig. 4. Renal ammoniagenesis and gluconeogenesis.
strated that glutamine stimulates incorporation of fruc-
tose, dihydroxyacetate, and lactate into glucose [109]. In
normal postabsorptive volunteers infused with glutamine

ation. First, the calculation of renal production of glucose at a rate estimated to approximate its appearance in
from glutamine and alanine depends on several determi- plasma after a protein meal, a combination of isotopic
nations (for example, renal blood flow, substrate concen-

and forearm balance techniques was used to assess
trations, substrate-specific activities, and enrichments),

changes in glutamine gluconeogenesis and forearm sub-each of which involves some measurement error. Impre-
strate metabolism [165]. Neither systemic glucose turn-cision in each of these, although small, will lead to larger
over nor forearm balance of glucose and alanine were al-imprecision in the final calculation. The errors, however,
tered. Although infusion of glutamine increased plasmaare not strictly additive. For example, in studies from our
glutamine concentration and turnover only threefold,own laboratory [62, 63], coefficients of variation (CV) of
formation of glucose from glutamine increased sev-blood flow, concentrations, and specific activities were
enfold. Formation of glucose from alanine was also stim-less than 2%, 3%, and 5%, respectively. The overall CV
ulated in the absence of a change in plasma alanineis equal to the square root of the sum of the individual
concentration. Because glutamine and alanine appear toCVs or approximately 6%. Second, isotopic assessment
be selective substrates for renal and hepatic gluconeo-of gluconeogenesis using a labeled precursor will under-
genesis, respectively [62], these observations imply thatestimate the incorporation of that precursor into glucose
infusion of glutamine had increased gluconeogenesis inbecause of dilution of the specific activity or enrichment
both organs. Moreover, because the stimulatory effectsof the labeled precursor in the Krebs cycle and other
of glutamine on gluconeogenesis occurred in the absencepools [22, 87, 88, 156, 157]. Underestimation because of
of changes in plasma insulin and glucagon levels, theseKrebs cycle carbon exchange that occurs in both liver
results provide evidence that in humans, glutamine mayand kidney [22, 88] will depend on the location of the
act as both a substrate and a regulator of gluconeogene-label in the precursor used and on the specific experimen-
sis. Finally, because increases in the concentrations oftal conditions [88, 108]. In postabsorptive humans, this
other gluconeogenic precursors such as lactate [167], ala-underestimation has been calculated to be as great as
nine [71, 168], and glycerol [48] produce only propor-40% [87].
tional increases of their incorporation into glucose, theseKrebs cycle carbon exchange has not been directly
observations provide evidence that glutamine exerts acompared; however, in vitro data for glutamine incorpo-
unique stimulatory effect on gluconeogenesis.ration into glucose by canine renal tubules [22], and in

There are several possible mechanisms by which gluta-vivo data for incorporation of lactate into glucose in dogs
mine may regulate gluconeogenesis. Glutamine could[156] indicate comparable degrees of underestimation.
substitute as an oxidative fuel for other substrates andTherefore, it is reasonable for the previously mentioned
shunt them into the gluconeogenic pathway. In addition,studies in humans to assume that hepatic and renal car-
it has been reported to increase lactate uptake by renalbon exchange are similar. Isotopic dilution would thus
tubules [109] and to increase the activity of phosphoenol-affect the absolute rates of incorporation into glucose

but not the relative gluconeogenesis in liver and kidney. pyruvate carboxykinase in rat kidney cortex homoge-
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nates [169]. Moreover, in cultured HeLa cells and fibro- patients with type I diabetes mellitus. Normal plasma
glutamine concentrations and turnover rates have alsoblasts, glutamine has been shown to reduce fructose-2,6-

biphosphate levels [170]. Such an effect, if operative in been found in type II diabetic subjects, but splanchnic
extraction has not been assessed [34, 189]. Using a combi-human liver and kidney, would promote gluconeogenesis

by activating fructose-1,6-biphosphatase [171]. Finally, nation of isotopic and forearm balance techniques, in-
creased glutamine conversion to glucose and to alanineincreased glutamine utilization in liver and kidney could

stimulate the aspartate-malate shuttle [172] while gener- but decreased oxidation and forearm release were found
in type II diabetics compared with normal controls [34].ating the increased reducing equivalents and ATP re-

quired for increased gluconeogenesis [107]. It was suggested that the reduction in glutamine oxida-
tion could be due to increased plasma free fatty acids

Glycogen synthesis (FFA) and glucose levels usually associated with type II
diabetes [190]. Free fatty acids and glucose, in view ofLiver. It has been known for some time from studies

by Katz, Golden and Wals [173, 174] and Rognstad [175] the prevailing hyperglycemia, could have substituted for
glutamine as an oxidative fuel in certain tissues makingthat not only glucose but also glycogen is formed by

isolated liver preparations in the presence of gluconeo- more available for gluconeogenesis. Octanoate and ke-
tone bodies have been shown to reduce glutamine utiliza-genic substrates, and that glutamine is the most effective

amino acid for enhancing glycogen formation. In addi- tion by rat enterocytes [191], and glutamine uptake by
the small intestine is reduced in streptozotocin diabetiction to simply providing carbons for indirect pathway

glycogen synthesis [176–178], the activation of key en- rats [191, 192].
In type II diabetes, glucose formed from glutaminezymes such as glycogen synthetase by glutamine appears

to be involved [158, 175]. It has been proposed that has been shown to exceed that formed from alanine (0.90
vs. 0.78 mmol · kg21 · min21) [34]. However, net glutaminestimulation of glycogen synthetase is related to signals

caused by hepatocyte swelling after rapid uptake of glu- uptake by the human liver is small relative to that of
alanine [81, 85]. Values reported for net hepatic alaninetamine [179]. Liver cell swelling has also been observed

with other metabolites [179, 180], but glutamine seems uptake in type II diabetes [80] can account for alanine
conversion to glucose [34, 193], whereas those reportedto cause the most marked volume changes [181]. The

exact mechanism of this stimulation, however, is still for net hepatic glutamine uptake (30 mmol · min21 in
normal volunteers) [85] can not account for the gluta-unclear. Furthermore, there are conflicting observations

from studies in perfused livers whether glutamine was mine conversion to glucose (95 mmol · min21) [34]. Fur-
thermore, net splanchnic glutamine extraction has beenincorporated into glucose but not into glycogen [182,

183]. Available evidence suggests there may be differen- reported not to be altered in type I diabetes [188]. It thus
appears difficult to postulate increased hepatic glutaminetial regulation by individual amino acids in directing car-

bons in the glucose-6-phophate pool toward generation gluconeogenesis in type II diabetes. One possible expla-
nation is that there is increased release or decreasedof either glucose or glycogen [173, 181].

Muscle. The stimulatory effect of glutamine on glyco- uptake of glutamine by nonhepatic splanchnic tissues.
In streptozotocin diabetic rats, uptake of glutamine bygen synthesis is not confined to the liver. Administration

of large intraperitoneal doses of glutamine in rats re- the small intestine is decreased [191, 192, 194]. Alterna-
tively, it is possible that in type II diabetes renal gluta-sulted in a significant increase in skeletal muscle glycogen

accumulation [184]. In humans whose muscle glycogen mine gluconeogenesis is increased. Renal glutamine up-
take is increased in streptozotocin diabetic rats [192].and glutamine stores were depleted by exercise, infusion

of glutamine at double its normal plasma flux, but not Moreover, in diabetic animals, there is increased activity
of renal gluconeogenic enzymes [195–197] and increasedinfusion of alanine plus glycine, increased net muscle

glycogen storage threefold compared with infusion of renal gluconeogenesis [58, 144, 198]. Finally, preliminary
studies indicate that in patients with type I diabetes takensaline [185]. Because labeling of glycogen by infused

[13C]glucose was similar in the glutamine and saline group, off regular insulin, renal glucose release is increased [199].
it was concluded that glutamine had no effect on the
fractional rate of blood glucose incorporation into glyco- CONCLUSIONS
gen. The authors proposed that stimulation of glycogen

Until recently, the importance in humans of glutaminesynthetase and diversion of glutamine carbon to glyco-
as a gluconeogenic precursor and a potential metabolicgen were both involved.
regulator has been underestimated. There is now evi-
dence that even in postabsorptive humans, glutamine

DIABETES MELLITUS makes a significant contribution to the addition of new
carbon, that is, noncarbohydrate derived, to the glucoseConcentration [186–188], turnover [36], and net

splanchnic extraction of glutamine [188] are normal in carbon pool. The importance of alanine for gluconeogen-
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