Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Nov 3;83(3):493-501.
doi: 10.1016/0092-8674(95)90127-2.

Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2

Affiliations
Free article

Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2

M Tsujii et al. Cell. .
Free article

Abstract

Prostaglandin endoperoxide synthase 2, also referred to as cyclooxygenase 2 (COX-2), is a key enzyme in the conversion of arachidonic acid to prostaglandins and other eicosanoids. Rat intestinal epithelial (RIE) cells were permanently transfected with a COX-2 expression vector oriented in the sense (RIE-S) or antisense (RIE-AS) direction. The RIE-S cells expressed elevated COX-2 protein levels and demonstrated increased adhesion to extracellular matrix (ECM) proteins. E-cadherin was undetectable in RIE-S cells, but was elevated in parental RIE (RIE-P) and RIE-AS cells. RIE-S cells were resistant to butyrate-induced apoptosis, had elevated BCL2 protein expression, and reduced transforming growth factor beta 2 receptor levels. The phenotypic changes involving both increased adhesion to ECM and inhibition of apoptosis were reversed by sulindac sulfide (a COX inhibitor). These studies demonstrate that overexpression of COX-2 leads to phenotypic changes in intestinal epithelial cells that could enhance their tumorigenic potential.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources