Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Mar;35(3):1298-1312.
doi: 10.1002/ptr.6893. Epub 2020 Oct 9.

Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: A review

Affiliations
Review

Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: A review

Bikash Adhikari et al. Phytother Res. 2021 Mar.

Abstract

The whole world is entangled by the coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), people are dying in thousands each day, and without an actual medication, it seems not possible for the bringing this global health crisis to a stop. Natural products have been in constant use since ancient times and are proven by time to be effective. Crude extract or pure compounds isolated from medicinal plants and/or herbs such as Artemisia annua, Agastache rugosa, Astragalus membranaceus, Cassia alata, Ecklonia cava, Gymnema sylvestre, Glycyrrhizae uralensis, Houttuynia cordata, Lindera aggregata, Lycoris radiata, Mollugo cerviana, Polygonum multiflorum, Pyrrosia lingua, Saposhnikoviae divaricate, Tinospora cordifolia etc. have shown promising inhibitory effect against coronavirus. Several molecules, including acacetin, amentoflavone, allicin, blancoxanthone, curcumin, daidzein, diosmin, epigallocatechin-gallate, emodin, hesperidin, herbacetin, hirsutenone, iguesterin, jubanine G, kaempferol, lycorine, pectolinarin, phloroeckol, silvestrol, tanshinone I, taxifolin, rhoifolin, xanthoangelol E, zingerol etc. isolated from plants could also be potential drug candidates against COVID-19. Moreover, these could also show promising inhibitory effects against influenza-parainfluenza viruses, respiratory syncytial virus, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome coronavirus (MERS-CoV). Here, we have reported 93 antiviral drug candidates which could be a potential area of research in drug discovery.

Keywords: anti-antiviral activity and COVID-19; drug candidates; natural products.

PubMed Disclaimer

Conflict of interest statement

The authors declare that there is no conflict of interest regarding the publication of this paper.

Figures

FIGURE 1
FIGURE 1
Multliplication stages of virus in a living cell and major antiviral drugs with their mode of action http://biorender.com [Colour figure can be viewed at wileyonlinelibrary.com]
FIGURE 2
FIGURE 2
(a) Natural compounds isolated from medicinal plants for antiviral activity: Lycorine (1), Kaempferol (2), Quercetin (3), Luteolin‐7‐glucoside (4), Demethoxycurcumin (5), Naringenin (6), Apigenin‐7‐glucoside (7), Oleuropein (8), Curcumin (9), Catechin (10), Epigallocatechin‐gallate (11), Zingerol (12), Gingerol (13), Allicin (14), Hesperidin (15),Diammonium glycyrrhizinate (16). (b) Natural compounds isolated from medicinal plants for antiviral activity: Amentoflavone (17), Betulinic acid (18), Bisbenzylisoquinoline (19), Blancoxanthone (20), Chrysanthemumin B (21), Cryptotanshinone (22), Escinidin (23), Hirsutenone (24), Homoharringtonine (25), Iguesterin (26), Jubanine G (27), Kazinol F (28), Leptodactylone (29), Ouabain (30), Psoralidin (31), Papyriflavonol A (32). (c) Natural compounds isolated from medicinal plants for antiviral activity: Schimperinone (33), Silvestrol (34), Sinigrin (35), Tanshinone I (36), Theaflavin (37), Tingenone (38), Tylophorine (39), Xanthoangelol E (40), 7‐Methoxycryptopleurine (41). (d) Natural compounds isolated from medicinal plants for antiviral activity: Friedeline (42), Methyl‐3α,23‐dihydroxy‐17,14‐friedolanstan‐8,14,24‐trien‐26‐oat (43), 24E‐3a,9,23‐trihydroxy‐17,14‐ friedolanostan‐14,24‐dien‐26‐oate (44), Pentagalloylglucose (PGG) (45), Glycyrrhizic acid (46), 2‐Acetamido‐β‐D‐glucopyansylamine (47), Acacetin (48), Auraptene (49), Cardamonin (50), Daidzein (51), Epicatechin (52), Glabridin (53), Herbacetin (54), Isoxanthohumol (55), Taxifolin hydrate (56), Isobavachalcone (57), Quercetin 3‐β‐D‐glucoside (58). (e) Natural compounds isolated from medicinal plants for antiviral activity: Helichrysetin (59), Fisetin (60), Rutin (61), Coumarin (62), Caffeic acid (63), 5‐Caffeoylquinic acid (64), Calanolide A (65), Baicalin (66), Emodin (67), Pectolinarin (68), Cannabinoids (69), Rhoifolin (70), Diosmin (71), Apiin (72), Diacetylcurcumin (73). (f) Natural compounds isolated from medicinal plants for antiviral activity: (E)‐1‐(2‐Hydroxy‐4‐methoxyphenyl)‐3‐[3‐[(E)‐3‐(2‐hydroxy‐4‐methoxyphenyl)‐3‐oxoprop‐1‐enyl]phenyl]prop‐2‐en‐1‐one (74), beta,beta′‐(4‐Methoxy‐1,3‐phenylene)bis(2′‐hydroxy‐4′,6′‐dimethoxyacrylophenone (75), Isoscutellarein (76), 5,7‐Dimethoxyflavone (77), Tetramethyllueteonin (78), Tri methyl apigenin (79),5‐Hydroxy‐7‐methoxyflavone (80), Ginkgetin (81), Quercetin 3‐rhamnoside (82), Celastrol (83), Pristimerin (84), Tingenone (85). (g) Natural compounds isolated from medicinal plants for antiviral activity: Dieckol (86), Eckol (87), Triphloretol A (88), Dioxinodehydroeckol (89), 2‐Phloroeckol (90), 7‐Phloroeckol (91), Phlorofucofuroeckol A (92), Fucodiphloroethol G (93)

Similar articles

Cited by

References

    1. Abad, M. J. , Guerra, J. A. , Bermejo, P. , Irurzun, A. , & Carrasco, L. (2000). Search for antiviral activity in higher plant extracts. Phytotherapy Research, 14(8), 604–607. 10.1002/1099-1573(200012)14:8<604::AID-PTR678>3.0.CO;2-L - DOI - PubMed
    1. Adem, S. , Eyupoglu, V. , Sarfraz, I. , Rasul, A. , & Ali, M. (2020). Identification of potent COVID‐19 main protease (M pro ) inhibitors from natural polyphenols: An in silico strategy unveils a hope against CORONA. Retrieved from 10.20944/preprints202003.0333.v1 - DOI - PMC - PubMed
    1. Alagu Lakshmi, S. , Shafreen, R. M. B. , Priya, A. , & Shunmugiah, K. P. (2020). Ethnomedicines of Indian origin for combating COVID‐19 infection by hampering the viral replication: Using structure‐based drug discovery approach. Journal of Biomolecular Structure & Dynamics, 1–16. 10.1080/07391102.2020.1778537 - DOI - PMC - PubMed
    1. Anani, K. , Hudson, J. B. , de Souza, C. , Akpagana, K. , Tower, G. H. N. , Arnason, J. T. , & Gbeassor, M. (2000). Investigation of medicinal plants of Togo for antiviral and antimicrobial activities. Pharmaceutical Biology, 38(1), 40–45. 10.1076/1388-0209(200001)3811-BFT040 - DOI - PubMed
    1. Balzarini, J. , Keyaerts, E. , Vijgen, L. , Vandermeer, F. , Stevens, M. , De Clercq, E. , … Van Ranst, M. (2006). Pyridine N‐oxide derivatives are inhibitory to the human SARS and feline infectious peritonitis coronavirus in cell culture. Journal of Antimicrobial Chemotherapy, 57(3), 472–481. 10.1093/jac/dki481 - DOI - PMC - PubMed

MeSH terms