Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 27;11(1):4303.
doi: 10.1038/s41467-020-18159-4.

A panel of human neutralizing mAbs targeting SARS-CoV-2 spike at multiple epitopes

Affiliations

A panel of human neutralizing mAbs targeting SARS-CoV-2 spike at multiple epitopes

Tal Noy-Porat et al. Nat Commun. .

Abstract

The novel highly transmissible human coronavirus SARS-CoV-2 is the causative agent of the COVID-19 pandemic. Thus far, there is no approved therapeutic drug specifically targeting this emerging virus. Here we report the isolation and characterization of a panel of human neutralizing monoclonal antibodies targeting the SARS-CoV-2 receptor binding domain (RBD). These antibodies were selected from a phage display library constructed using peripheral circulatory lymphocytes collected from patients at the acute phase of the disease. These neutralizing antibodies are shown to recognize distinct epitopes on the viral spike RBD. A subset of the antibodies exert their inhibitory activity by abrogating binding of the RBD to the human ACE2 receptor. The human monoclonal antibodies described here represent a promising basis for the design of efficient combined post-exposure therapy for SARS-CoV-2 infection.

PubMed Disclaimer

Conflict of interest statement

Patent application for the described antibodies was filed by the Israel Institute for Biological Research. None of the authors declared any additional competing interests.

Figures

Fig. 1
Fig. 1. Characterization of the novel human anti-SARS-CoV-2 antibodies.
a Binding curves of polyclonal antibodies in serially diluted serum samples (n = 3 wells per dilution) of COVID-19 patients obtained by ELISA using S1 or RBD as coating antigen. Data represent average of triplicates ±SEM. b Amino acid sequences of the HCDR3 and LCDR3 of the selected antibodies and their respective germ line genes. c Specificity of the selected antibodies determined by ELISA (n = 3 wells per sample) against the indicated SARS-CoV-2 proteins. Data represent average of triplicates ±SEM. d Reactivity profile of antibodies determined by ELISA (n = 3 wells per dilution), using S1 as the coating antigen. Data is presented as binding percent of Bmax for each antibody. The values represent average of triplicates ±SEM. e Binding characteristics of the monoclonal antibodies determined using biolayer interferometry. All antibodies were biotinylated, immobilized to the sensor and interacted with increasing amounts of RBD. Binding kinetics were fitted using the 1:1 binding model.
Fig. 2
Fig. 2. Epitope binning and SARS-CoV-2 neutralization.
a Biolayer interferometry (BLI) was applied for the epitope binning experiments. Representative assay results are shown for MD65 mAb. The purified antibody was biotinylated, immobilized on streptavidin sensor and saturated with RBD. The complex was then incubated for 300 s with each one of the indicated antibodies. Time 0 represents the binding to the MD65-RBD complex. b Complete epitope binning of the eight selected MD monoclonal antibodies. Binding was evaluated by the ability of each pair of antibodies to simultaneously bind RBD, using biolayer interferometry. The matrix presents the concluded epitope specificity on the basis of the various competition experiments; see Supplementary Fig. 3 for the detailed competition profiles obtained by the binning experiments. c Four noncompeting RBD binding epitopes were identified and accordingly classified into four groups: I (blue), II (green), III (pink) and IV (yellow). d SARS-CoV-2 in vitro neutralization using plaque reduction neutralization test (PRNT). Neutralization potency was determined by the ability of each antibody (at indicated concentrations) to reduce plaques formation; results are expressed as percent inhibition of control without Ab. The values represent average of duplicates. e Binding of human ACE2 to RBD in the presence of neutralizing antibodies (representing each of the epitope groups) was tested by BLI. Each of the biotinylated antibodies was immobilized on streptavidin sensor, saturated with RBD, washed and incubated with recombinant human ACE2 for 300 s. Time 0 represents the binding of the ACE2 to the antibody-RBD complex.

Similar articles

Cited by

References

    1. https://www.who.int/health-topics/coronavirus#tab=tab_1.
    1. Iwasaki, A. & Yang, Y. The potential danger of suboptimal antibody responses in COVID-19. Nat Rev Immunol, 10.1038/s41577-020-0321-6 (2020). - PMC - PubMed
    1. Prabakaran P, et al. Potent human monoclonal antibodies against SARS CoV, Nipah and Hendra viruses. Expert Opin. Biol. Ther. 2009;9:355–368. doi: 10.1517/14712590902763755. - DOI - PMC - PubMed
    1. Zhou H, et al. Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein. Nat. Commun. 2019;10:3068. doi: 10.1038/s41467-019-10897-4. - DOI - PMC - PubMed
    1. Ying T, et al. Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies. J. Virol. 2014;88:7796–7805. doi: 10.1128/JVI.00912-14. - DOI - PMC - PubMed

MeSH terms

LinkOut - more resources